SAI Hua-yang,XU Zhen-bang,HE Shuai,et al.Predefined-time sliding mode control for rigid spacecraft[J].Optics and Precision Engineering,2021,29(12):2891-2901.
SAI Hua-yang,XU Zhen-bang,HE Shuai,et al.Predefined-time sliding mode control for rigid spacecraft[J].Optics and Precision Engineering,2021,29(12):2891-2901. DOI: 10.37188/OPE.20212912.2891.
Predefined-time sliding mode control for rigid spacecraft
To minimize system uncertainty and external disturbance in attitude tracking control for rigid spacecraft, a predefined-time sliding mode controller (PTSMC) is proposed. First, the spacecraft attitude tracking system is developed with quaternion parameterization, and the predefined time sliding surface is designed using an error quaternion and error angular velocity. Then, considering the uncertainties and external disturbances of the spacecraft system, a PTSMC with a non conservative upper bound is designed, and the noise of the system is reduced using boundary layer technology. Finally, by designing the Lyapunov function, the predefined-time stability of the proposed controller and the non conservative upper bound of the system convergence are demonstrated. The simulation results show that using the proposed approach, the attitude tracking accuracy of rigid spacecraft can reach 1.5×10
-
6
rad, and the angular velocity tracking accuracy can reach 2×10
-
6
rad/s. Compared with the existing predefined time control and non singular terminal sliding mode control, the upper bound of the stabilization time of the proposed control is more non conservative and has higher tracking accuracy and robustness. The effectiveness of the control scheme is further illustrated by the attitude tracking experiment of the 3 DOF airborne platform. The angle tracking error is less than 0.1 rad, and the position tracking error is less than 0.2 m.
关键词
Keywords
references
XIA Y Q , ZHU Z , FU M Y , et al . Attitude tracking of rigid spacecraft with bounded disturbances [J]. IEEE Transactions on Industrial Electronics , 2011 , 58 ( 2 ): 647 - 659 . doi: 10.1109/tie.2010.2046611 http://dx.doi.org/10.1109/tie.2010.2046611
YIN F , WU Y . Model reconstruction and pose optimization of non-cooperative rotating space target [J]. Optics and Precision Engineering , 2019 , 27 ( 8 ): 1854 - 1862 . (in Chinese) . doi: 10.3788/OPE.20192708.1854 http://dx.doi.org/10.3788/OPE.20192708.1854
WANG F , MIAO Y , LI C Y , et al . Attitude control of rigid spacecraft with predefined-time stability [J]. Journal of the Franklin Institute , 2020 , 357 ( 7 ): 4212 - 4221 . doi: 10.1016/j.jfranklin.2020.01.001 http://dx.doi.org/10.1016/j.jfranklin.2020.01.001
FANG Y K , YUAN B W , MENG Z Y , et al . Attitude control in multi-satellite cooperative observations for distributed remote sensing [J]. Optics and Precision Engineering , 2019 , 27 ( 1 ): 58 - 68 . (in Chinese) . doi: 10.3788/ope.20192701.0058 http://dx.doi.org/10.3788/ope.20192701.0058
LIU J , DENG Y T , LI H W . High-precision photoelectric acquisition and tracking based on cascade sliding mode control [J]. Optics and Precision Engineering , 2020 , 28 ( 2 ): 350 - 362 . (in Chinese)
PUKDEBOON C , JITPATTANAKUL A . Anti-unwinding attitude control with fixed-time convergence for a flexible spacecraft [J]. International Journal of Aerospace Engineering , 2017 , 2017 : 1 - 13 . doi: 10.1155/2017/5018323 http://dx.doi.org/10.1155/2017/5018323
WANG Z , SU Y X , ZHANG L Y . A new nonsingular terminal sliding mode control for rigid spacecraft attitude tracking [J]. Journal of Dynamic Systems, Measurement, and Control , 2018 , 140 ( 5 ): 051006 . doi: 10.1115/1.4038094 http://dx.doi.org/10.1115/1.4038094
POLYAKOV A . Nonlinear feedback design for fixed-time stabilization of linear control systems [J]. IEEE Transactions on Automatic Control , 2012 , 57 ( 8 ): 2106 - 2110 . doi: 10.1109/tac.2011.2179869 http://dx.doi.org/10.1109/tac.2011.2179869
ZOU A M , KUMAR K D , DE RUITER A H J . Fixed-time attitude tracking control for rigid spacecraft [J]. Automatica , 2020 , 113 : 108792 . doi: 10.1016/j.automatica.2019.108792 http://dx.doi.org/10.1016/j.automatica.2019.108792
SÁNCHEZ-TORRES J D , GÓMEZ-GUTIÉRREZ D , LÓPEZ E , et al . A class of predefined-time stable dynamical systems [J]. IMA Journal of Mathematical Control and Information , 2018 , 35 ( Supplement_1 ): i1 - i29 . doi: 10.1093/imamci/dnx004 http://dx.doi.org/10.1093/imamci/dnx004
JIMÉNEZ-RODRÍGUEZ E , MUÑOZ-VÁZQUEZ A J , SÁNCHEZ-TORRES J D , et al . A Lyapunov-like characterization of predefined-time stability [J]. IEEE Transactions on Automatic Control , 2020 , 65 ( 11 ): 4922 - 4927 . doi: 10.1109/tac.2020.2967555 http://dx.doi.org/10.1109/tac.2020.2967555
ALDANA-LÓPEZ R , GÓMEZ-GUTIÉRREZ D , JIMÉNEZ-RODRÍGUEZ E , et al . Enhancing the settling time estimation of a class of fixed-time stable systems [J]. International Journal of Robust and Nonlinear Control , 2019 , 29 ( 12 ): 4135 - 4148 . doi: 10.1002/rnc.4600 http://dx.doi.org/10.1002/rnc.4600
SÁNCHEZ-TORRES J D , DEFOORT M , MUÑOZ-VÁZQUEZ A J . A second order sliding mode controller with predefined-time convergence [C]// 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) . September 5-7, 2018 , Mexico City, Mexico. IEEE , 2018 : 1 - 4 . doi: 10.1109/iceee.2018.8533952 http://dx.doi.org/10.1109/iceee.2018.8533952
JIMÉNEZ-RODRÍGUEZ E , LOUKIANOV A G , SÁNCHEZ-TORRES J D . A second order predefined-time control algorithm [C]// 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) . October 20-22, 2017 , Mexico City, Mexico. IEEE , 2017 : 1 - 6 . doi: 10.1109/iceee.2017.8108833 http://dx.doi.org/10.1109/iceee.2017.8108833
BHAT S P , BERNSTEIN D S . Finite-time stability of continuous autonomous systems [J]. SIAM Journal on Control and Optimization , 2000 , 38 ( 3 ): 751 - 766 . doi: 10.1137/s0363012997321358 http://dx.doi.org/10.1137/s0363012997321358
SÁNCHEZ-TORRES J D , SANCHEZ E N , LOUKIANOV A G . A discontinuous recurrent neural network with predefined time convergence for solution of linear programming [C]// 2014 IEEE Symposium on Swarm Intelligence . December 9-12, 2014 , Orlando, FL, USA . IEEE , 2014 : 1 - 5 . doi: 10.1109/sis.2014.7011799 http://dx.doi.org/10.1109/sis.2014.7011799
WEN J T Y , KREUTZ-DELGADO K . The attitude control problem [J]. IEEE Transactions on Automatic Control , 1991 , 36 ( 10 ): 1148 - 1162 . doi: 10.1109/9.90228 http://dx.doi.org/10.1109/9.90228
XU C , LI D W , HE SH , et al . Design of air-bearing simulator for free-flying robot [J]. Optics and Precision Engineering , 2019 , 27 ( 2 ): 352 - 362 . (in Chinese) . doi: 10.3788/OPE.20192702.0352 http://dx.doi.org/10.3788/OPE.20192702.0352
Sliding mode control strategy for PMSM speed ring based on improved exponential convergence law and adaptive Lunberger observer
High-precision adaptive fractional order sliding mode tracking control for piezoelectric platform
System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror
Fine segmentation and stable tracking of spacecraft components
Spacecraft structure reconstruction with fiber bragg grating and incremental extreme learning machine
Related Author
TANG Tengyu
DENG Yongting
ZHANG Zhimin
FU Jia
XU Yifan
KANG Yuxin
LIU Jing
SUN Mingchao
Related Institution
Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
Army Armaments Department
State Key Laboratory of Dynamic Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
College of Electrical Engineering and Automation, Shandong University of Science and Technology
School of Computer Science and Technology, University of Chinese Academy of Sciences