Based on the theory of compressed sensing, a method for efficient coding and reconstruction of optical remote sensing images is proposed to reduce the pressure of data acquisition and transmission faced by large area scan cameras. First, a multi-domain perception matrix is constructed combining the spatial and compressed sensing domains. Compression is realized while sampling, and multiple compressed domain information is obtained. Then, for multi-domain compressed information, a reconstruction method based on the Huber function is proposed to rapidly reconstruct high fidelity images. The results of the optical image coding and reconstruction techniques proposed in this paper have higher structural similarity(SSIM) and PSNR compared to JPEG compression methods. Using images of the Jilin-1 satellite, single target and scene infrared images yields a PSNR reaching 40 dB and SSIM exceeding 0.8. Based on these findings, an efficient system for coding and restoring optical images is designed. The proposed system can meet the need for rapid compression and high fidelity reconstruction on the satellite.
NING Y H , LIU H , ZHAO Q L , et al . High-frame frequency imaging system of large area CMOS image sensor [J]. Opt. Precision Eng. , 2019 , 27 ( 5 ): 1167 - 1177 . (in Chinese) . doi: 10.3788/ope.20192705.1167 http://dx.doi.org/10.3788/ope.20192705.1167
XU D D . Research on Real-time Video Compression of Space CMOS Camera with High Resolution [D]. Changchun : Changchun : Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , 2016 . (in Chinese)
TAUBMAN D S . JPEG2000: image compression fundamentals, standards and practice [J]. Journal of Electronic Imaging , 2002 , 11 ( 2 ): 286 . doi: 10.1117/1.1469618 http://dx.doi.org/10.1117/1.1469618
LEI J , YU L L , LUO X H , et al . Efficient coding method for deep space detection Bayer pattern image [J]. Opt. Precision Eng. , 2019 , 27 ( 1 ): 191 - 200 . (in Chinese) . doi: 10.3788/ope.20192701.0191 http://dx.doi.org/10.3788/ope.20192701.0191
DONOHO D L . Compressed sensing [J]. IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 . doi: 10.1109/tit.2006.871582 http://dx.doi.org/10.1109/tit.2006.871582
CHEN M H , WANG F , ZHANG CH X , et al . Sparse reconstruction of frequency domain OCT image based on compressed sensing [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 189 - 199 . (in Chinese) . doi: 10.3788/ope.20202801.0189 http://dx.doi.org/10.3788/ope.20202801.0189
ZHAO SH B , LI X H . Research on reflection spectrum reconstruction algorithm based on compressed sensing [J]. Spectroscopy and Spectral Analysis , 2021 , 41 ( 4 ): 1092 - 1096 . (in Chinese) . doi: 10.1155/2021/6650630 http://dx.doi.org/10.1155/2021/6650630
CHEN T , LI ZH W , WANG J L , et al . Imaging system of single pixel camera based on compressed sensing [J]. Opt. Precision Eng. , 2012 , 20 ( 11 ): 2523 - 2530 . (in Chinese) . doi: 10.3788/OPE.20122011.2523 http://dx.doi.org/10.3788/OPE.20122011.2523
ABOLGHASEMI V , ANISI M H . Compressive sensing for remote flood monitoring [J]. IEEE Sensors Letters , 2021 , 5 ( 4 ): 1 - 4 . doi: 10.1109/lsens.2021.3066342 http://dx.doi.org/10.1109/lsens.2021.3066342
BOBIN J , STARCK J L , OTTENSAMER R . Compressed sensing in astronomy [J]. IEEE Journal of Selected Topics in Signal Processing , 2008 , 2 ( 5 ): 718 - 726 . doi: 10.1109/jstsp.2008.2005337 http://dx.doi.org/10.1109/jstsp.2008.2005337
YUAN X , HAIMI-COHEN R . Image compression based on compressive sensing: end-to-end comparison with JPEG [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 11 ): 2889 - 2904 . doi: 10.1109/tmm.2020.2967646 http://dx.doi.org/10.1109/tmm.2020.2967646
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 - 509 . doi: 10.1109/tit.2005.862083 http://dx.doi.org/10.1109/tit.2005.862083
XU L J , XIN L , CAO Z . L1-norm-based reconstruction algorithm for particle sizing [J]. IEEE Transactions on Instrumentation and Measurement , 2012 , 61 ( 5 ): 1395 - 1404 . doi: 10.1109/tim.2012.2186475 http://dx.doi.org/10.1109/tim.2012.2186475
BECK A , TEBOULLE M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences , 2009 , 2 ( 1 ): 183 - 202 . doi: 10.1137/080716542 http://dx.doi.org/10.1137/080716542
MILINKOVIĆ M , PETRIĆ D . Comparison between CS and JPEG in terms of image compression [C]. 7th Mediterranean Conference on Embedded Computing MECO 2018 , 2018 : 4 .
COIFMAN R , GESHWIND F , MEYER Y . Noiselets [J]. Applied and Computational Harmonic Analysis , 2001 , 10 ( 1 ): 27 - 44 . doi: 10.1006/acha.2000.0313 http://dx.doi.org/10.1006/acha.2000.0313
HUI B W , SONG ZH Y , FAN H Q , et al . A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background [J]. China Scientific Data , 2020 , 5 ( 3 ): 291 - 302 . (in Chinese)
Sparse reconstruction of frequency domain OCT image based on compressed sensing
Separation of multi-energy X-ray imaging based on sparse processing
Estimation of missing components of Fourier Telescopy based on least square fitting
Double hyperchaotic systems combine compressed sensing and Fibonacci transform for color image encryption
Adaptive focusing evaluation algorithm for optical imaging of wafer positioning marks
Related Author
Ming-hui CHEN
Fan WANG
Chen-xi ZHANG
Fu-gang LI
Gang ZHENG
Bin FEI
Jing-yang SUN
Jun-ju ZHANG
Related Institution
Shanghai Upper Bio-tech Pharma Co., Ltd.
Shanghai Interventional Medical Device Engineering Technology Research Center, Shanghai Institute for Minimally Invasive Therapy, Institute of Biomedical Optics and Optometry, University of Shanghai for Science and Technology