LIAO Dunwei,ZHENG Yuejun,CUI Hao,et al.Mechanism analysis and verification of double-layer micro-nano structure to enhance electromagnetic shielding[J].Optics and Precision Engineering,2022,30(11):1310-1316.
An analysis model is established and a theoretical formula is deduced to analyze the electromagnetic shielding enhanced by a double-layer micro-nano structure. By using the square structure as an example, the effectiveness of the electromagnetic shielding enhanced by the double-layer micro-nano structure is investigated, and a calculation formula for the electromagnetic shielding of the double-layer structure is derived. In addition, a full-wave simulation is carried out using CST Microwave Studio, the results of which are in good agreement with those of the theoretical calculations. In the full-wave simulation, the micro-nano structure is two-three orders of magnitude smaller than the calculated corresponding wavelength, which verifies the correctness of the mechanism analysis and the calculation of the full-wave simulation software. The analysis of the electromagnetic shielding enhancement mechanism and the provided calculation formula can be extended to the multilayer micro-nano structure, which is universal. To further verify the accuracy of the mechanism analysis and the full-wave software simulation results, a square double-layer micro-nano structure sample is prepared. The measured results of the sample are essentially consistent with the theoretical and full-wave simulation results. The shielding effectiveness is greater than 45 dB in the range of 2-18 GHz, and the average light transmittance exceeds 71%, which has good transparent shielding performance. This mechanism analysis provides theoretical guidance for designing micro-nano structures with increased light transmission and high-efficiency electromagnetic shielding performance.
关键词
Keywords
references
SCHNEIDER J , ROHNER P , THUREJA D , et al . Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes [J]. Advanced Functional Materials , 2016 , 26 ( 6 ): 833 - 840 . doi: 10.1002/adfm.201503705 http://dx.doi.org/10.1002/adfm.201503705
PARK J H , LEE D Y , KIM Y H , et al . Flexible and transparent metallic grid electrodes prepared by evaporative assembly [J]. ACS Applied Materials & Interfaces , 2014 , 6 ( 15 ): 12380 - 12387 . doi: 10.1021/am502233y http://dx.doi.org/10.1021/am502233y
KHAN A , LEE S , JANG T , et al . High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process [J]. Small , 2016 , 12 ( 22 ): 3021 - 3030 . doi: 10.1002/smll.201600309 http://dx.doi.org/10.1002/smll.201600309
ABBASI S A , CHAI Z M , BUSNAINA A . Scalable printing of high-resolution flexible transparent grid electrodes using directed assembly of silver nanoparticles [J]. Advanced Materials Interfaces , 2019 , 6 ( 21 ): 1900898 . doi: 10.1002/admi.201900898 http://dx.doi.org/10.1002/admi.201900898
WANG W Q , BAI B F , ZHOU Q , et al . Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction [J]. Optical Materials Express , 2018 , 8 ( 11 ): 3485 - 3493 . doi: 10.1364/ome.8.003485 http://dx.doi.org/10.1364/ome.8.003485
LIU Y H , XU J L , SHEN S , et al . High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications [J]. Journal of Materials Chemistry A , 2017 , 5 ( 19 ): 9032 - 9041 . doi: 10.1039/c7ta01947e http://dx.doi.org/10.1039/c7ta01947e
JIN S W , LEE Y H , YEOM K M , et al . Highly durable and flexible transparent electrode for flexible optoelectronic applications [J]. ACS Applied Materials & Interfaces , 2018 , 10 ( 36 ): 30706 - 30715 . doi: 10.1021/acsami.8b10190 http://dx.doi.org/10.1021/acsami.8b10190
SMITH H A , REBBERT M , STERNBERG O . Designer infrared filters using stacked metal lattices [J]. Applied Physics Letters , 2003 , 82 ( 21 ): 3605 - 3607 . doi: 10.1063/1.1579115 http://dx.doi.org/10.1063/1.1579115
LU Z G , WANG H Y , TAN J B , et al . Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh [J]. Applied Physics Letters , 2014 , 105 ( 24 ): 241904 . doi: 10.1063/1.4904466 http://dx.doi.org/10.1063/1.4904466
LU Z G , LIU Y S , WANG H Y , et al . Verification and improvement of equivalent refractive index models for evaluating the shielding effectiveness of high-transmittance double-layer metallic meshes [J]. Applied Optics , 2016 , 55 ( 20 ): 5372 - 5378 . doi: 10.1364/ao.55.005372 http://dx.doi.org/10.1364/ao.55.005372
WANG H Y , LU Z G , LIU Y S , et al . Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding [J]. Optics Letters , 2017 , 42 ( 8 ): 1620 - 1623 . doi: 10.1364/ol.42.001620 http://dx.doi.org/10.1364/ol.42.001620
LIU Y M , HAN Y , CAO J R , et al . Wireless communication bandpass optical window with double-layer hexagon aperture FSS array [C]. Proc SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation , 2015 , 9446 : 223 - 228 . doi: 10.1117/12.2180687 http://dx.doi.org/10.1117/12.2180687
LU Z G , TAN J B . Analysis of transmitting characteristics of high-transparency double-layer metallic meshes with submillimeter period using an analytical model [J]. Applied Optics , 2008 , 47 ( 29 ): 5519 - 5526 . doi: 10.1364/ao.47.005519 http://dx.doi.org/10.1364/ao.47.005519
KAIPA C S R , YAKOVLEV A B , MEDINA F , et al . Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes [J]. Optics Express , 2010 , 18 ( 13 ): 13309 - 13320 . doi: 10.1364/oe.18.013309 http://dx.doi.org/10.1364/oe.18.013309
VOGEL P , GENZEL L . Transmission and reflection of metallic mesh in the far infrared [J]. Infrared Physics , 1964 , 4 ( 4 ): 257 - 262 . doi: 10.1016/0020-0891(64)90034-x http://dx.doi.org/10.1016/0020-0891(64)90034-x
ULRICH R . Far-infrared properties of metallic mesh and its complementary structure [J]. Infrared Physics , 1967 , 7 ( 1 ): 37 - 55 . doi: 10.1016/0020-0891(67)90028-0 http://dx.doi.org/10.1016/0020-0891(67)90028-0
DURSCHLAG M S , DETEMPLE T A . Far-IR optical properties of freestanding and dielectrically backed metal meshes [J]. Applied Optics , 1981 , 20 ( 7 ): 1245 - 1253 . doi: 10.1364/ao.20.001245 http://dx.doi.org/10.1364/ao.20.001245
WHITBOURN L B , COMPTON R C . Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary [J]. Applied Optics , 1985 , 24 ( 2 ): 217 . doi: 10.1364/ao.24.000217 http://dx.doi.org/10.1364/ao.24.000217
KOHIN M , WEIN S J , TRAYLOR J D , et al . Analysis and design of transparent conductive coatings and filters [J]. Optical Engineering , 1993 , 32 ( 5 ): 911 - 925 . doi: 10.1117/12.130266 http://dx.doi.org/10.1117/12.130266