HU Yifan,ZHANG Haijun,NI Kaijia.Mini-piezo-element drive microactuator based on triangular amplification[J].Optics and Precision Engineering,2022,30(17):2094-2099.
HU Yifan,ZHANG Haijun,NI Kaijia.Mini-piezo-element drive microactuator based on triangular amplification[J].Optics and Precision Engineering,2022,30(17):2094-2099. DOI: 10.37188/OPE.20223000.0223.
Mini-piezo-element drive microactuator based on triangular amplification
This paper proposes a mini-piezo-element drive microactuator based on triangular amplification. The actuator is composed of two 1.6 mm×1.6 mm×5.0 mm mini piezo-elements, two triangular waists serving as symmetrical stretch arms, and one large apex flexure hinge (scanning end). When both stretch arms are driven by the mini-piezo-elements an amplified output displacement on the scanning end can be obtained through triangular amplification. Theoretical analysis and finite element simulation show that when the angle between each triangular stretch arm and the bottom edge is 6°, the ratio of the displacement at the scanning end to the expansion at the mini-piezo-element’s approaches 9∶1. Furthermore, the simulation results show that compared with the displacement of the mini-piezo-element of 3.2 μm, under 80 V driving voltage, the displacement of the scanning end can be enlarged to 29.5 μm. Micro-motion measurement experiments were conducted under the same driving voltage, and the displacement of the scanning end was measured as 26.6 μm, with an actual amplification ratio of 8.3. The proposed mini-piezo-element drive microactuator was successfully employed as the slow axis scanner of an atomic force microscope (AFM) and for wide-range AFM imaging (4 μm×26 μm). In conclusion, the proposed microactuator is a novel, simple structure that yields good results at low cost and is expected to be widely applied in optics, precision machinery, and micro/nano technology.
关键词
Keywords
references
BINNIG G , QUATE C F , GERBER C . Atomic force microscope [J]. Physical Review Letters , 1986 , 56 ( 9 ): 930 - 933 . doi: 10.1103/physrevlett.56.930 http://dx.doi.org/10.1103/physrevlett.56.930
ZHANG H J , CHEN J J , WANG Y D , et al . Development of wirelessly controlled atomic force microscope [J]. Opt. Precision Eng. , 2018 , 26 ( 9 ): 2206 - 2212 . (in Chinese) . doi: 10.3788/ope.20182609.2205 http://dx.doi.org/10.3788/ope.20182609.2205
HABIBULLAH H . 30 Years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners [J]. Measurement , 2020 , 159 : 107776 . doi: 10.1016/j.measurement.2020.107776 http://dx.doi.org/10.1016/j.measurement.2020.107776
XU W , KING T . Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations [J]. Precision Engineering , 1996 , 19 ( 1 ): 4 - 10 . doi: 10.1016/0141-6359(95)00056-9 http://dx.doi.org/10.1016/0141-6359(95)00056-9
CUI F N , LI Y M , QIAN J N . Development of a 3-DOF flexible micro-motion platform based on a new compound lever amplification mechanism [J]. Micromachines , 2021 , 12 ( 6 ): 686 . doi: 10.3390/mi12060686 http://dx.doi.org/10.3390/mi12060686
HUANG W Q , SHI X Q , WANG Y . Design of diamond piezoelectric micro displacement amplification mechanism [J]. Opt. Precision Eng. , 2015 , 23 ( 3 ): 803 - 809 . (in Chinese) . doi: 10.3788/OPE.20152303.0803 http://dx.doi.org/10.3788/OPE.20152303.0803
MEIER T , FÖRSTE A , TAVASSOLIZADEH A , et al . A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans [J]. Beilstein Journal of Nanotechnology , 2015 , 6 : 451 - 461 . doi: 10.3762/bjnano.6.46 http://dx.doi.org/10.3762/bjnano.6.46
IQBAL S , MALIK A . A review on MEMS based micro displacement amplification mechanisms [J]. Sensors and Actuators A: Physical , 2019 , 300 : 111666 . doi: 10.1016/j.sna.2019.111666 http://dx.doi.org/10.1016/j.sna.2019.111666
LI X , ZHOU SH W , DING B X , et al . Design and analysis of the micro-positioning platform based on the novel two-level lever amplification mechanism [J]. Journal of Machine Design , 2021 , 38 ( 2 ): 102 - 107 . (in Chinese)
YAN P , LI J Y . Design of piezo-actuated long-stroke fast tool servo mechanism [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 390 - 397 . (in Chinese)
GHAFARIAN M , SHIRINZADEH B , AL-JODAH A , et al . FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator [J]. Journal of Micro-Bio Robotics , 2020 , 16 ( 1 ): 93 - 110 . doi: 10.1007/s12213-020-00133-4 http://dx.doi.org/10.1007/s12213-020-00133-4
MARCHESI A , UMEDA K , KOMEKAWA T , et al . An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution [J]. Scientific Reports , 2021 , 11 : 13003 . doi: 10.1038/s41598-021-92365-y http://dx.doi.org/10.1038/s41598-021-92365-y
TIAN Y L , MA Y , WANG F J , et al . A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure [J]. Sensors and Actuators A: Physical , 2020 , 302 : 111777 . doi: 10.1016/j.sna.2019.111777 http://dx.doi.org/10.1016/j.sna.2019.111777
CHOI K B , LEE J , KIM G , et al . Design and analysis of a flexure-based parallel XY stage driven by differential piezo forces [J]. International Journal of Precision Engineering and Manufacturing , 2020 , 21 ( 8 ): 1547 - 1561 . doi: 10.1007/s12541-020-00358-0 http://dx.doi.org/10.1007/s12541-020-00358-0
张子尧 . 显微目标的微纳米运动测量方法及技术研究 [D]. 杭州 : 浙江大学 , 2021 .
ZHANG Z Y . Micro-motion Measurement Method and Technique of Microscopic Objects [D]. Hangzhou : Zhejiang University , 2021 . (in Chinese)