浏览全部资源
扫码关注微信
沈阳工业大学 信息科学与工程学院,辽宁 沈阳 110870
Received:16 August 2021,
Revised:16 September 2021,
Published:15 February 2022
移动端阅览
张贺,杨爽,揣荣岩等.混沌流微混合器的性能优化[J].光学精密工程,2022,30(03):286-295.
ZHANG He,YANG Shuang,CHUAI Rongyan,et al.Performance optimization of chaotic flow micromixer[J].Optics and Precision Engineering,2022,30(03):286-295.
张贺,杨爽,揣荣岩等.混沌流微混合器的性能优化[J].光学精密工程,2022,30(03):286-295. DOI: 10.37188/OPE.20223003.0286.
ZHANG He,YANG Shuang,CHUAI Rongyan,et al.Performance optimization of chaotic flow micromixer[J].Optics and Precision Engineering,2022,30(03):286-295. DOI: 10.37188/OPE.20223003.0286.
为提高低雷诺数层流条件下被动式微混合器的效率,依据“三维马蹄变换”数学模型,对流体进行“挤压拉伸”“弯曲折叠”“二次折叠”和“逆变换-交集”操作,得到了一款包含6个混合单元,总长度为15 mm的混沌流微混合器。仿真研究表明:在“低流速-扩散主导”阶段
u
=2×10
-
4
m/s时,
t
=300 s后混合器进入稳定混合状态,出口处的混合指数
α
Outlet
=97.82%;在“中流速-湍流发展”阶段
u
=5×10
-
3
m/s时,
t
=70 s后进入稳定混合状态,经3个混合单元后混合指数
α
Inlet4
=98.89%;在“高流速-湍流主导”阶段
u
=8×10
-
2
m/s时,
t
=22 s后进入稳定混合状态,经2个混合单元后混合指数
α
Inlet3
=99.35%。采用基于面投影微立体光刻的3D打印技术整体制备了混合器芯片,借助显微镜用可视化方法对不同进样流速下的混合器性能进行了验证,示踪剂颜色变化实验结果与表面浓度云图的仿真结果一致。
In order to improve the efficiency of passive micromixers under laminar flows at low Reynolds numbers, this study conducts a series of operations on fluids including "extrusion stretching," "curved folding," "secondary folding," and "inverse transformation intersection" based on a mathematical model of 3D horseshoe transformation. The considered chaotic flow micromixer contains six mixing units with a total length of 15 mm. Simulations show that in the low flow rate-diffusion dominated stage, the mixer enters a stable state after
t
=300 s when
u
=2×10
-
4
m/s, and the mixing index
α
Outlet
=97.82% at the mixer outlet. In the medium velocity-turbulence development stage, the mixer enters a stable state after
t
=70 s when
u
=5×10
-
3
m/s, and the mixing index
α
Inlet4
=98.89% at the inlet of mixing unit 4. In the high velocity-turbulence dominated stage, the mixer enters a stable state after
t
=22 s when
u
=8×10
-
2
m/s, and the mixing index
α
Inlet3
=99.35% at the inlet of mixing unit 3. The entire mixer chip is fabricated as a whole by 3D printing technology based on surface projection micro-stereo lithography. The performance of the mixer at different injection flow rates is verified by visualization using a microscope. The results of the tracer color change experiment are consistent with the simulation results of the mixer surface concentration cloud map.
NARAYANAMURTHY V , JEROISH Z E , BHUVANESHWARI K S , et al . Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis [J]. RSC Advances , 2020 , 10 ( 20 ): 11652 - 11680 . doi: 10.1039/d0ra00263a http://dx.doi.org/10.1039/d0ra00263a
SHARMA I , THAKUR M , SINGH S , et al . Microfluidic devices as a tool for drug delivery and diagnosis: a review [J]. International Journal of Applied Pharmaceutics , 2021 : 95 - 102 . doi: 10.22159/ijap.2021v13i1.39032 http://dx.doi.org/10.22159/ijap.2021v13i1.39032
LÖWA N , GUTKELCH D , WELGE E A , et al . Novel benchtop magnetic particle spectrometer for process monitoring of magnetic nanoparticle synthesis [J]. Nanomaterials , 2020 , 10 ( 11 ): 2277 . doi: 10.3390/nano10112277 http://dx.doi.org/10.3390/nano10112277
FARAHINIA A , ZHANG W J . Numerical analysis of a microfluidic mixer and the effects of different cross-sections and various input angles on its mixing performance [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering , 2020 , 42 ( 4 ): 1 - 18 . doi: 10.1007/s40430-020-02275-9 http://dx.doi.org/10.1007/s40430-020-02275-9
RAZA W , KIM K Y . Unbalanced split and recombine micromixer with three-dimensional steps [J]. Industrial & Engineering Chemistry Research , 2020 , 59 ( 9 ): 3744 - 3756 . doi: 10.1021/acs.iecr.9b00682 http://dx.doi.org/10.1021/acs.iecr.9b00682
MASHAEI P R , ASIAEI S , HOSSEINALIPOUR S M . Mixing efficiency enhancement by a modified curved micromixer: a numerical study [J]. Chemical Engineering and Processing-Process Intensification , 2020 , 154 : 108006 . doi: 10.1016/j.cep.2020.108006 http://dx.doi.org/10.1016/j.cep.2020.108006
VASILESCU S A , BAZAZ S R , JIN D Y , et al . 3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation [J]. Applied Materials Today , 2020 , 20 : 100726 . doi: 10.1016/j.apmt.2020.100726 http://dx.doi.org/10.1016/j.apmt.2020.100726
AREF H . Stirring by chaotic advection [J]. Journal of Fluid Mechanics , 1984 , 143 : 1 - 21 . doi: 10.1017/s0022112084001233 http://dx.doi.org/10.1017/s0022112084001233
YANG A S , CHUANG F C , CHEN C K , et al . A high-performance micromixer using three-dimensional Tesla structures for bio-applications [J]. Chemical Engineering Journal , 2015 , 263 : 444 - 451 . doi: 10.1016/j.cej.2014.11.034 http://dx.doi.org/10.1016/j.cej.2014.11.034
SALIEB-BEUGELAAR G , GONÇALVES D , WOLF M , et al . Microfluidic 3D helix mixers [J]. Micromachines , 2016 , 7 ( 10 ): 189 . doi: 10.3390/mi7100189 http://dx.doi.org/10.3390/mi7100189
YANG H E , YAO G C , WEN D S . Efficient mixing enhancement by orthogonal injection of shear-thinning fluids in a micro serpentine channel at low Reynolds numbers [J]. Chemical Engineering Science , 2021 , 235 : 116368 . doi: 10.1016/j.ces.2020.116368 http://dx.doi.org/10.1016/j.ces.2020.116368
张贺 , 揣荣岩 , 李新 , 等 . 依据马蹄变换的混沌流微混合器 [J]. 哈尔滨工业大学学报 , 2019 , 51 ( 4 ): 60 - 65 . doi: 10.11918/j.issn.0367-6234.201801127 http://dx.doi.org/10.11918/j.issn.0367-6234.201801127
ZHANG H , CHUAI R Y , LI X , et al . Chaos flow micromixer based on Horseshoe Transformation [J]. Journal of Harbin Institute of Technology , 2019 , 51 ( 4 ): 60 - 65 . (in Chinese) . doi: 10.11918/j.issn.0367-6234.201801127 http://dx.doi.org/10.11918/j.issn.0367-6234.201801127
ASTM . Standard Terminology for Additive Manufacturing Technologies [S]. ASTM International, 2012 . doi: 10.1520/jai104299 http://dx.doi.org/10.1520/jai104299
SANTANA H S , PALMA M S A , LOPES M G M , et al . Microfluidic devices and 3D printing for synthesis and screening of drugs and tissue engineering [J]. Industrial & Engineering Chemistry Research , 2020 , 59 ( 9 ): 3794 - 3810 . doi: 10.1021/acs.iecr.9b03787 http://dx.doi.org/10.1021/acs.iecr.9b03787
AGARWAL A , SALAHUDDIN A , WANG H L , et al . Design and development of an efficient fluid mixing for 3D printed lab-on-a-chip [J]. Microsystem Technologies , 2020 , 26 ( 8 ): 2465 - 2477 . doi: 10.1007/s00542-020-04787-9 http://dx.doi.org/10.1007/s00542-020-04787-9
GONG H , WOOLLEY A T , NORDIN G P . 3D printed selectable dilution mixer pumps [J]. Biomicrofluidics , 2019 , 13 ( 1 ): 014106 . doi: 10.1063/1.5070068 http://dx.doi.org/10.1063/1.5070068
邱京江 . 基于增材制造的个性化微流控芯片定制方法及关键技术研究 [D]. 杭州 : 浙江大学 , 2018 .
QIU J J . Research on Customization of Individualized Microfluidic Chips via Additive Manufacturing [D]. Hangzhou : Zhejiang University , 2018 . (in Chinese)
张贺 . 基于微混合器的重金属离子微全分析系统芯片研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2015 .
ZHANG H . Heavy Metal Ions μ TAS Chip Based on Micromixer [D]. Harbin : Harbin Institute of Technology , 2015 . (in Chinese)
NanoArch P 140 System Introduction [EB/OL]. http://www.bmftec.cn/zh/print/details/2 http://www.bmftec.cn/zh/print/details/2 .
张贺 , 刘晓为 , 揣荣岩 , 等 . 用于Pb 2+ 、Hg 2+ 离子选择性固相萃取的微流控芯片 [J]. 哈尔滨工业大学学报 , 2017 , 49 ( 5 ): 141 - 147 . doi: 10.11918/j.issn.0367-6234.201701030 http://dx.doi.org/10.11918/j.issn.0367-6234.201701030
ZHANG H , LIU X W , CHUAI R Y , et al . Microfluidic chip for selective solid phase extraction of Pb 2+ and Hg 2+ [J]. Journal of Harbin Institute of Technology , 2017 , 49 ( 5 ): 141 - 147 . (in Chinese) . doi: 10.11918/j.issn.0367-6234.201701030 http://dx.doi.org/10.11918/j.issn.0367-6234.201701030
ZHANG H , CHUAI R Y , LI X , et al . Design, preparation and performance study of on-chip flow-through amperometric sensors with an integrated Ag/AgCl reference electrode [J]. Micromachines , 2018 , 9 ( 3 ): 114 . doi: 10.3390/mi9030114 http://dx.doi.org/10.3390/mi9030114
0
Views
1168
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution