浏览全部资源
扫码关注微信
石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
Received:14 July 2021,
Revised:31 August 2021,
Published:15 February 2022
移动端阅览
张云佐,宋洲臣,郭威等.融合分层连续梯度特征的高铁隧道漏缆卡扣检测[J].光学精密工程,2022,30(03):331-339.
ZHANG Yunzuo,SONG Zhouchen,GUO Wei,et al.Detection of leaky cable fixture in high-speed railway tunnel with layered continuous gradient fusion feature[J].Optics and Precision Engineering,2022,30(03):331-339.
张云佐,宋洲臣,郭威等.融合分层连续梯度特征的高铁隧道漏缆卡扣检测[J].光学精密工程,2022,30(03):331-339. DOI: 10.37188/OPE.20223003.0331.
ZHANG Yunzuo,SONG Zhouchen,GUO Wei,et al.Detection of leaky cable fixture in high-speed railway tunnel with layered continuous gradient fusion feature[J].Optics and Precision Engineering,2022,30(03):331-339. DOI: 10.37188/OPE.20223003.0331.
基于局部二值模式的深度挖掘算法和多特征融合算法是提取铁路隧道漏缆卡扣特征的有效方法,但它们存在描述子表述性不强且特征维度过高的问题。提出分层连续梯度二值模式,能够实现卡扣轮廓特征的尺度变换并降低描述子的特征维度,提高故障卡扣图像的分类准确率。首先采用改进的中心对称局部二值模式和根据全局灰度均值获得的自适应阈值,计算采样圆域的梯度方向特征,得到完整的初步梯度方向特征图;然后在此特征图上进行两次连续的下采样迭代,并分别提取这两幅下采样特征图的连续梯度特征;最后,将这两层不同尺度的连续梯度特征串联作为描述子,用支持向量机完成漏缆卡扣图像的故障检测任务。实验结果表明,本文所提算法的召回率和精准度分别达到了0.923和0.857,相较于局部二值模式、中心对称局部二值模式、以及该系列的多种变体算法有明显的优势。
Deep mining algorithms and multi-feature fusion algorithms based on local binary patterns are effective methods for extracting the fixture features of leaky cables in railway tunnels; however, there are disadvantages that the descriptors are not expressive enough and that their feature dimensions are too high. In this paper, layered continuous gradient local binary pattern (LCG-LBP) was proposed, which could realize the scale transformation of leaky cable fixture features. It could reduce the feature dimension of the fusion descriptor extracted from down-sampling feature maps. It could also improve the classification accuracy of faulty fixture images effectively. First, the improved algorithm based on center-symmetric local binary pattern (CS-LBP) and the adaptive threshold obtained by the global gray average value were used to calculate the gradient direction feature in a circle domain unit, and the complete preliminary gradient direction feature map was obtained in this way. Then, two consecutive down-sampling iterations were performed on this preliminary feature map to obtain two down-sampling feature maps, and the continuous gradient features were extracted from these two down-sampling feature maps. Finally, the two layers of continuous gradient features in different scales were connected in series as a fusion descriptor, and a support vector machine (SVM) was used to complete the defect detection process using faulty cable fixture images obtained from railway tunnels. The experimental results show that the recall and accuracy of the algorithm proposed in this paper are 0.923 and 0.857, respectively, which show that the proposed algorithm has obvious advantages compared with local binary pattern (LBP), CS-LBP, and other variants.
田川 , 刘鑫 , 刘立海 , 等 . 铁路隧道GSM-R漏缆挂设高度研究 [J]. 铁道工程学报 , 2019 , 36 ( 10 ): 82 - 87 . doi: 10.3969/j.issn.1006-2106.2019.10.015 http://dx.doi.org/10.3969/j.issn.1006-2106.2019.10.015
TIAN CH , LIU X , LIU L H , et al . Research on the hanging height of GSM-R leaky coaxial cable in the railway tunnel [J]. Journal of Railway Engineering Society , 2019 , 36 ( 10 ): 82 - 87 . (in Chinese) . doi: 10.3969/j.issn.1006-2106.2019.10.015 http://dx.doi.org/10.3969/j.issn.1006-2106.2019.10.015
李彦 , 赵其峰 , 闫河 , 等 . Canny算子在PCBA目标边缘提取中的优化应用 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 2096 - 2102 . doi: 10.37188/OPE.20202809.2096 http://dx.doi.org/10.37188/OPE.20202809.2096
LI Y , ZHAO Q F , YAN H , et al . Optimized application of canny operator in PCBA target edge extraction [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2096 - 2102 . (in Chinese) . doi: 10.37188/OPE.20202809.2096 http://dx.doi.org/10.37188/OPE.20202809.2096
黄鸿 , 李政英 , 石光耀 , 等 . 面向高光谱影像分类的多特征流形鉴别嵌入 [J]. 光学 精密工程 , 2019 , 27 ( 3 ): 726 - 738 . doi: 10.3788/OPE.20192703.0726 http://dx.doi.org/10.3788/OPE.20192703.0726
HUANG H , LI ZH Y , SHI G Y , et al . Multi-features manifold discriminant embedding for hyperspectral image classification [J]. Opt. Precision Eng. , 2019 , 27 ( 3 ): 726 - 738 . (in Chinese) . doi: 10.3788/OPE.20192703.0726 http://dx.doi.org/10.3788/OPE.20192703.0726
范赐恩 , 冉杰文 , 颜佳 , 等 . 颜色空间统计联合纹理特征的无参考图像质量评价 [J]. 光学 精密工程 , 2018 , 26 ( 4 ): 916 - 926 . doi: 10.3788/OPE.20182604.0916 http://dx.doi.org/10.3788/OPE.20182604.0916
FAN C E , RAN J W , YAN J , et al . No-reference image quality assessment using joint color space statistical and texture feature [J]. Opt. Precision Eng. , 2018 , 26 ( 4 ): 916 - 926 . (in Chinese) . doi: 10.3788/OPE.20182604.0916 http://dx.doi.org/10.3788/OPE.20182604.0916
OJALA T , PIETIKÄINEN M , HARWOOD D . A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition , 1996 , 29 ( 1 ): 51 - 59 . doi: 10.1016/0031-3203(95)00067-4 http://dx.doi.org/10.1016/0031-3203(95)00067-4
HEIKKILÄ M , PIETIKÄINEN M , SCHMID C . Description of interest regions with local binary patterns [J]. Pattern Recognition , 2009 , 42 ( 3 ): 425 - 436 . doi: 10.1016/j.patcog.2008.08.014 http://dx.doi.org/10.1016/j.patcog.2008.08.014
GUO Z H , ZHANG L , ZHANG D . A completed modeling of local binary pattern operator for texture classification [J]. IEEE Transactions on Image Processing , 2010 , 19 ( 6 ): 1657 - 1663 . doi: 10.1109/tip.2010.2044957 http://dx.doi.org/10.1109/tip.2010.2044957
DALAL N , TRIGGS B . Histograms of oriented gradients for human detection [C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 05 ). June 20-25, 2005 , San Diego, CA, USA. IEEE , 2005: 886 - 893 .
WANG X Y , HAN T X , YAN S C . An HOG-LBP human detector with partial occlusion handling [C]. 2009 IEEE 12th International Conference on Computer Vision. September 29 - October 2 , 2009 , Kyoto, Japan. IEEE , 2009: 32 - 39 . doi: 10.1109/iccv.2009.5459207 http://dx.doi.org/10.1109/iccv.2009.5459207
ZENG C B , MA H D . Robust head-shoulder detection by PCA-based multilevel HOG-LBP detector for people counting [C]. 2010 20th International Conference on Pattern Recognition . 2326,2010 , Istanbul, Turkey . IEEE , 2010 : 2069 - 2072 . doi: 10.1109/icpr.2010.509 http://dx.doi.org/10.1109/icpr.2010.509
尧佼 , 于凤芹 . 基于候选区域定位与HOG-CLBP特征组合的行人检测 [J]. 激光与光电子学进展 , 2021 , 58 ( 2 ): 165 - 172 . doi: 10.3788/lop202158.0210015 http://dx.doi.org/10.3788/lop202158.0210015
YAO J , YU F Q . Pedestrian detection based on combination of candidate region location and HOG-CLBP features [J]. Laser & Optoelectronics Progress , 2021 , 58 ( 2 ): 165 - 172 . (in Chinese) . doi: 10.3788/lop202158.0210015 http://dx.doi.org/10.3788/lop202158.0210015
李温温 , 刘富 , 姜守坤 . 指节纹图像感兴趣区域提取与特征识别算法 [J]. 吉林大学学报(工学版) , 2019 , 49 ( 2 ): 599 - 605 . doi: 10.13229/j.cnki.jdxbgxb20171259 http://dx.doi.org/10.13229/j.cnki.jdxbgxb20171259
LI W W , LIU F , JIANG SH K . ROI extraction and feature recognition algorithm for finger knuckle print image [J]. Journal of Jilin University (Engineering and Technology Edition) , 2019 , 49 ( 2 ): 599 - 605 . (in Chinese) . doi: 10.13229/j.cnki.jdxbgxb20171259 http://dx.doi.org/10.13229/j.cnki.jdxbgxb20171259
MERABET YEL , RUICHEK Y , IDRISSI AEL . Attractive-and-repulsive center-symmetric local binary patterns for texture classification [J]. Engineering Applications of Artificial Intelligence , 2019 , 78 : 158 - 172 . doi: 10.1016/j.engappai.2018.11.011 http://dx.doi.org/10.1016/j.engappai.2018.11.011
WOLF L , HASSNER T , TAIGMAN Y . Effective unconstrained face recognition by combining multiple descriptors and learned background statistics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 10 ): 1978 - 1990 . doi: 10.1109/tpami.2010.230 http://dx.doi.org/10.1109/tpami.2010.230
张云佐 , 杨攀亮 , 李汶轩 . 基于改进SSD算法的铁路隧道漏缆卡具检测 [J]. 激光与光电子学进展 , 2020 , 57 ( 14 ): 141005 .
ZHANG Y Z , YANG P L , LI W X . Leaky coaxial cable fixture detection based on improved SSD algorithm [J]. Laser & Optoelectronics Progress , 2020 , 57 ( 14 ): 141005 . (in Chinese)
REN C X , LEI Z , DAI D Q , et al . Enhanced local gradient order features and discriminant analysis for face recognition [J]. IEEE Transactions on Cybernetics , 2016 , 46 ( 11 ): 2656 - 2669 . doi: 10.1109/tcyb.2015.2484356 http://dx.doi.org/10.1109/tcyb.2015.2484356
CHEN J , PATEL V M , LIU L , et al . Robust local features for remote face recognition [J]. Image and Vision Computing , 2017 , 64 : 34 - 46 . doi: 10.1016/j.imavis.2017.05.006 http://dx.doi.org/10.1016/j.imavis.2017.05.006
0
Views
657
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution