浏览全部资源
扫码关注微信
1.合肥工业大学 仪器科学与光电工程学院,安徽 合肥230009
2.测量理论与精密仪器安徽省重点实验室,安徽 合肥230009
Received:04 August 2021,
Revised:22 September 2020,
Published:10 March 2022
移动端阅览
常松涛,夏豪杰.时间延迟积分荧光显微成像平场校正技术[J].光学精密工程,2022,30(05):527-535.
CHANG Songtao,XIA Haojie.Flat field correction technique for time delay integration fluorescence microscopy imaging[J].Optics and Precision Engineering,2022,30(05):527-535.
常松涛,夏豪杰.时间延迟积分荧光显微成像平场校正技术[J].光学精密工程,2022,30(05):527-535. DOI: 10.37188/OPE.20223005.0527.
CHANG Songtao,XIA Haojie.Flat field correction technique for time delay integration fluorescence microscopy imaging[J].Optics and Precision Engineering,2022,30(05):527-535. DOI: 10.37188/OPE.20223005.0527.
时间延迟积分(Time Delay Integration, TDI)图像传感器具有高速、高灵敏度等特点,广泛应用于高通量、大视场的荧光显微成像系统中。显微物镜视场内响应均匀是精确获取荧光能量分布的基础,为提高系统成像质量和测量准确度,研究了适用于TDI荧光显微成像系统的平场校正或响应非均匀性校正方法。根据TDI荧光成像系统的工作原理推导激光诱导荧光成像模型,分析图像均匀性退化机理。提出一种基于微阵列生物芯片的两步式校正方法,将系统响应非均匀性分为高频和低频部分分别校正,高频部分采用传统的两点校正方法,低频部分采用微阵列生物芯片校正。基于高通量TDI荧光显微成像系统开展实验,执行并验证本文的校正方法。实验结果表明:本文方法将TDI荧光成像系统的响应非均匀性由25.21%降低至2.87%,显著提高了系统性能。本文提出的校正方法能够满足TDI荧光显微成像系统的平场校正需求,具有一定的应用价值。
Owing to their high frame rate and sensitivity, time delay integration (TDI) image sensors are widely used in fluorescence microscopy imaging systems with high throughput and large field of view. Uniformity of response in the field of view of the microscope objective is the basis for accurate acquisition of fluorescence energy distribution. To improve the imaging quality and measurement accuracy of the system, this study investigated the response non-uniformity correction method applicable to the TDI fluorescence microscopy imaging system. First, a laser-induced fluorescence imaging model was devised based on the working principle of the TDI fluorescence imaging system, and the mechanism of image uniformity degradation was analyzed. A two-step correction method based on microarray biochips was then proposed, which divided the nonuniformity of system response into high frequency and low-frequency parts to be corrected separately. The former can be corrected by traditional two point correction, whereas the latter is corrected using the proposed microarray biochip-based method. Finally, experiments based on a high-throughput TDI fluorescence microscopy imaging system were conducted to verify the calibration method employed in this study. The experimental results show that the proposed approach reduces the response nonuniformity of the TDI fluorescence imaging system from 25.21% to 2.87%, implying a significant improvement in the system performance. Moreover, it shows that the correction method proposed in this paper can significantly correct the response nonuniformity of TDI fluorescent imaging systems, and is therefore effective and practical.
GUTSCHWAGER B , HOLLANDT J . Nonuniformity correction of imaging systems with a spatially nonhomogeneous radiation source [J]. Applied Optics , 2015 , 54 ( 36 ): 10599 - 10605 . doi: 10.1364/ao.54.010599 http://dx.doi.org/10.1364/ao.54.010599
程万胜 , 赵杰 , 蔡鹤皋 . CCD像素响应非均匀的校正方法 [J]. 光学 精密工程 , 2008 , 16 ( 2 ): 314 - 318 . doi: 10.3321/j.issn:1004-924X.2008.02.021 http://dx.doi.org/10.3321/j.issn:1004-924X.2008.02.021
CHENG W SH , ZHAO J , CAI H G . Correction method for pixel response nonuniformity of CCD [J]. Opt. Precision Eng. , 2008 , 16 ( 2 ): 314 - 318 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2008.02.021 http://dx.doi.org/10.3321/j.issn:1004-924X.2008.02.021
JIN Y , JIANG J , ZHANG G J . Three-step nonuniformity correction for a highly dynamic intensified charge-coupled device star sensor [J]. Optics Communications , 2012 , 285 ( 7 ): 1753 - 1758 . doi: 10.1016/j.optcom.2011.12.043 http://dx.doi.org/10.1016/j.optcom.2011.12.043
ZHANG X , ZENG F , LI Y , et al . Improvement in focusing accuracy of DNA sequencing microscope with multi-position laser differential confocal autofocus method [J]. Optics Express , 2018 , 26 ( 2 ): 887 - 896 . doi: 10.1364/oe.26.000887 http://dx.doi.org/10.1364/oe.26.000887
SILVESTRI L , BRIA A , SACCONI L , et al . Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain [J]. Optics Express , 2012 , 20 ( 18 ): 20582 . doi: 10.1364/oe.20.020582 http://dx.doi.org/10.1364/oe.20.020582
GONG H , XU D , YUAN J , et al . High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level [J]. Nature Communications , 2016 , 7 : 12142 . doi: 10.1038/ncomms12142 http://dx.doi.org/10.1038/ncomms12142
张鑫 . 高通量基因测序荧光显微成像光学系统研究 [D]. 长春 : 中国科学院长春光学精密机械与物理研究所 , 2018 .
ZHANG X . Research on High-throughput Gene Sequencing Fluorescence Microscopic Imaging Optical System [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics , University of Chinese Academy of Sciences , 2018 . (in Chinese)
CAO Y P , TISSE C L . Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera [J]. Optics Letters , 2014 , 39 ( 3 ): 646 . doi: 10.1364/ol.39.000646 http://dx.doi.org/10.1364/ol.39.000646
HE Z , CAO Y , DONG Y , et al . Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach [J]. Applied Optics , 2018 , 57 ( 18 ): D155 - D164 . doi: 10.1364/ao.57.00d155 http://dx.doi.org/10.1364/ao.57.00d155
ZHOU D B , WANG D J , HUO L J , et al . Scene-based nonuniformity correction for airborne point target detection systems [J]. Optics Express , 2017 , 25 ( 13 ): 14210 . doi: 10.1364/oe.25.014210 http://dx.doi.org/10.1364/oe.25.014210
MARCOTTE F , TREMBLAY P , FARLEY V . Infrared camera NUC calibration: comparison of advanced methods [J]. SPIE , 2014 , 8706 : 870603 .
王美昌 , 于斌 , 张炜 , 等 . 基于数字微镜器件的数字线扫描荧光显微成像技术 [J]. 物理学报 , 2020 , 69 ( 23 ): 238701 . doi: 10.7498/aps.69.20200908 http://dx.doi.org/10.7498/aps.69.20200908
WANG M CH , YU B , ZHANG W , et al . Digital line scanning fluorescence microscopy based on digital micromirror device [J]. Acta Physica Sinica , 2020 , 69 ( 23 ): 238701 . (in Chinese) . doi: 10.7498/aps.69.20200908 http://dx.doi.org/10.7498/aps.69.20200908
周豪 . 用于高通量筛选的细胞成像系统研究 [D]. 杭州 : 浙江大学 , 2011 .
ZHOU H . Research of Cell Image Capture System Used in High Throughput Screening [D]. Hangzhou : Zhejiang University , 2011 . (in Chinese)
FAN Y , NGUYEN D T , AKAY Y , et al . Engineering a brain cancer chip for high-throughput drug screening [J]. Scientific Reports , 2016 , 6 : 25062 . doi: 10.1038/srep25062 http://dx.doi.org/10.1038/srep25062
ZHANG Q , YANG X , HU Q , et al . High axial resolution imaging system for large volume tissues using combination of inclined selective plane illumination and mechanical sectioning [J]. Biomedical Optics Express , 2017 , 8 ( 12 ): 5767 - 5775 . doi: 10.1364/boe.8.005767 http://dx.doi.org/10.1364/boe.8.005767
SUI X B , CHEN Q , GU G H . A novel non-uniformity evaluation metric of infrared imaging system [J]. Infrared Physics & Technology , 2013 , 60 : 155 - 160 . doi: 10.1016/j.infrared.2013.04.005 http://dx.doi.org/10.1016/j.infrared.2013.04.005
刘涛 . 红外图像非均匀性校正算法及图像质量评价的研究 [D]. 杭州 : 浙江大学 , 2017 . doi: 10.20965/jdr.2017.p0198 http://dx.doi.org/10.20965/jdr.2017.p0198
LIU T . Non-uniformity Correction Algorithms and Quality Assessment for Infrared Image [D]. Hangzhou : Zhejiang University , 2017 . (in Chinese) . doi: 10.20965/jdr.2017.p0198 http://dx.doi.org/10.20965/jdr.2017.p0198
0
Views
606
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution