浏览全部资源
扫码关注微信
1.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
2.兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070
Received:08 October 2021,
Revised:19 November 2021,
Published:10 April 2022
移动端阅览
杨军,李博赞.基于自注意力特征融合组卷积神经网络的三维点云语义分割[J].光学精密工程,2022,30(07):840-853.
YANG Jun,LI Bozan.Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network[J].Optics and Precision Engineering,2022,30(07):840-853.
杨军,李博赞.基于自注意力特征融合组卷积神经网络的三维点云语义分割[J].光学精密工程,2022,30(07):840-853. DOI: 10.37188/OPE.20223007.0840.
YANG Jun,LI Bozan.Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network[J].Optics and Precision Engineering,2022,30(07):840-853. DOI: 10.37188/OPE.20223007.0840.
针对现有算法忽略点云数据全局单点特征和局部几何特征的深层关系,导致捕获的局部几何信息缺乏鉴别性且难以有效识别复杂形状的问题,提出基于自注意力特征融合组卷积神经网络的三维点云语义分割算法。首先,设计轻量化网络框架的代理点图卷积提取点云局部几何特征,并加入组卷积操作减少计算量和复杂度,以较少的冗余信息增强特征的丰富性;其次,通过Transformer模块进行不同分支间特征信息的交流,使全局特征和局部几何特征相互补偿,增强特征的完备性;然后,将点云底层语义特征与原始点云融合以扩大局部邻域感受野,获得高级上下文语义信息;最后,将特征输入到分割模块完成细粒度语义分割。实验结果表明,该算法在S3DIS数据集和SemanticKITTI数据集上的分割精度分别达到79.3%和56.6%,能够提取三维点云的关键特征信息,网络参数量较少且具有较高的语义分割鲁棒性。
The existing algorithms ignore the profound relationship between global single point features and local geometric features. This results in the lack of discriminative captured local geometric information and increases the difficulty of effectively identifying complex shape categories. This paper proposes a semantic segmentation algorithm for three-dimensional point clouds based on a self-attention feature fusion group convolutional neural network. First, the proxy point graph convolution of lightweight network is designed to extract the local geometric features of the point cloud. Then, the group convolution operation is added to reduce the amount of calculation and complexity and enhance the richness of features with less redundant information. Second, the feature information exchange between different branches is carried out through the Transformer module to ensure mutual compensation between the global and local geometric features and to enhance the completeness of features. Then, the underlying semantic features of the point cloud are fused with the original point cloud to expand the local neighborhood perception field and obtain high-level context semantic information. Finally, the features are input into the segmentation module to complete fine-grained semantic segmentation. The experimental results show that the segmentation accuracy reaches 79.3% and 56.6% in the S3DIS and SemanticKITTI datasets, respectively. This algorithm can extract the key feature information from a 3D point cloud using fewer network parameters and exhibits high robustness of semantic segmentation.
QI C R , LIU W , WU C X , et al . Frustum PointNets for 3D object detection from RGB-D data [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 918 - 927 . doi: 10.1109/cvpr.2018.00102 http://dx.doi.org/10.1109/cvpr.2018.00102
LIU Z Z , CHEN H Y , DI H J , et al . Real-time 6D lidar SLAM in large scale natural terrains for UGV [C]. 2018 IEEE Intelligent Vehicles Symposium . 2630,2018 , Changshu, China . IEEE , 2018 : 662 - 667 . doi: 10.1109/ivs.2018.8500641 http://dx.doi.org/10.1109/ivs.2018.8500641
GOLOVINSKIY A , KIM V G , FUNKHOUSER T . Shape-based recognition of 3D point clouds in urban environments [C]. 2009 IEEE 12th International Conference on Computer Vision. September 29 - October 2 , 2009 , Kyoto, Japan. IEEE , 2009: 2154 - 2161 . doi: 10.1109/iccv.2009.5459471 http://dx.doi.org/10.1109/iccv.2009.5459471
LAWIN F J , DANELLJAN M , TOSTEBERG P , et al . Deep projective 3D semantic segmentation [C]. International Conference on Computer Analysis of Images and Patterns (CAIP). 2224,2017 , Ystad, Sweden. Cham : Springer , 2017 : 95 - 107 . doi: 10.1007/978-3-319-64689-3_8 http://dx.doi.org/10.1007/978-3-319-64689-3_8
HUANG J , YOU S Y . Point cloud labeling using 3D Convolutional Neural Network [C]. 2016 23rd International Conference on Pattern Recognition (ICPR). 48,2016 , Mexico: Cancun. IEEE , 2016 : 2670 - 2675 . doi: 10.1109/icpr.2016.7900038 http://dx.doi.org/10.1109/icpr.2016.7900038
GRAHAM B , ENGELCKE M , MAATEN L V D . 3D semantic segmentation with submanifold sparse convolutional networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 9224 - 9232 . doi: 10.1109/cvpr.2018.00961 http://dx.doi.org/10.1109/cvpr.2018.00961
LIU Z J , TANG H T , LIN Y J , et al . Point-voxel CNN for efficient 3D deep learning [J]. CoRR , 2019 , abs/1907. 03739 .
杨军 , 党吉圣 . 采用深度级联卷积神经网络的三维点云识别与分割 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1187 - 1199 . doi: 10.3788/OPE.20202805.1187 http://dx.doi.org/10.3788/OPE.20202805.1187
YANG J , DANG J SH . Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1187 - 1199 . (in Chinese) . doi: 10.3788/OPE.20202805.1187 http://dx.doi.org/10.3788/OPE.20202805.1187
杨军 , 党吉圣 . 基于上下文注意力CNN的三维点云语义分割 [J]. 通信学报 , 2020 , 41 ( 7 ): 195 - 203 . doi: 10.11959/j.issn.1000-436x.2020128 http://dx.doi.org/10.11959/j.issn.1000-436x.2020128
YANG J , DANG J SH . Semantic segmentation of 3D point cloud based on contextual attention CNN [J]. Journal on Communications , 2020 , 41 ( 7 ): 195 - 203 . (in Chinese) . doi: 10.11959/j.issn.1000-436x.2020128 http://dx.doi.org/10.11959/j.issn.1000-436x.2020128
DOSOVITSKIY A , BEYER L , KOLESNIKOV A , et al . An image is worth 16×16 words: transformers for image recognition at scale [J]. ArXiv Preprint ArXiv : 2010.11929 , 2020 .
QI D , SU L , SONG J , et al . Imagebert: Cross-modal pre-training with large-scale weak-supervised image-text data [J]. ArXiv Preprint ArXiv : 2001.07966 , 2020 .
MILIOTO A , VIZZO I , BEHLEY J , et al . RangeNet ++: fast and accurate LiDAR semantic segmentation [C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 38,2019 , Macao, China. IEEE , 2019 : 4213 - 4220 . doi: 10.1109/iros40897.2019.8967762 http://dx.doi.org/10.1109/iros40897.2019.8967762
XU C F , WU B C , WANG Z N , et al . SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation [C]. European Conference on Computer Vision (ECCV). Aug. 23-28, 2020 , Online. Cham : Springer , 2020 : 1 - 19 .. doi: 10.1007/978-3-030-58604-1_1 http://dx.doi.org/10.1007/978-3-030-58604-1_1
WU B C , WAN A , YUE X Y , et al . SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud [C]. 2018 IEEE International Conference on Robotics and Automation . 2125,2018 , Brisbane , QLD , Australia . IEEE , 2018 : 1887 - 1893 . doi: 10.1109/icra.2018.8462926 http://dx.doi.org/10.1109/icra.2018.8462926
CHOY C , GWAK J , SAVARESE S . 4D spatio-temporal ConvNets: minkowski convolutional neural networks [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 3070 - 3079 . doi: 10.1109/cvpr.2019.00319 http://dx.doi.org/10.1109/cvpr.2019.00319
CHARLES R Q , HAO S , MO K C , et al . PointNet: deep learning on point sets for 3D classification and segmentation [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition . 2126,2017 , Honolulu, HI, USA . IEEE , 2017 : 77 - 85 . doi: 10.1109/cvpr.2017.16 http://dx.doi.org/10.1109/cvpr.2017.16
QI C R , YI L , SU H , et al . PointNet++: deep hierarchical feature learning on point sets in a metric space [EB/OL]. 2017: arXiv : 1706 .02413[cs.CV]. https://arxiv.org/abs/1706.02413 https://arxiv.org/abs/1706.02413
JIANG L , ZHAO H S , LIU S , et al . Hierarchical point-edge interaction network for point cloud semantic segmentation [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . 272,2019 , Seoul, Korea (South). IEEE , 2019 : 10432 - 10440 . doi: 10.1109/iccv.2019.01053 http://dx.doi.org/10.1109/iccv.2019.01053
DANG J S , YANG J . HPGCNN : Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing [M]. Computer Vision-ACCV 2020. Cham : Springer International Publishing , 2021 : 20 - 37 . doi: 10.1007/978-3-030-69525-5_2 http://dx.doi.org/10.1007/978-3-030-69525-5_2
HU Q Y , YANG B , XIE L H , et al . RandLA-net: efficient semantic segmentation of large-scale point clouds [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 11105 - 11114 . doi: 10.1109/cvpr42600.2020.01112 http://dx.doi.org/10.1109/cvpr42600.2020.01112
LANDRIEU L , SIMONOVSKY M . Large-scale point cloud semantic segmentation with superpoint graphs [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 4558 - 4567 . doi: 10.1109/cvpr.2018.00479 http://dx.doi.org/10.1109/cvpr.2018.00479
ARMENI I , SENER O , ZAMIR A R , et al . 3D semantic parsing of large-scale indoor spaces [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition . 2730,2016 , Las Vegas, NV, USA . IEEE , 2016 : 1534 - 1543 . doi: 10.1109/cvpr.2016.170 http://dx.doi.org/10.1109/cvpr.2016.170
BEHLEY J , GARBADE M , MILIOTO A , et al . SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) . 272,2019 , Seoul, Korea (South). IEEE , 2019 : 9296 - 9306 . doi: 10.1109/iccv.2019.00939 http://dx.doi.org/10.1109/iccv.2019.00939
ZHAO H , JIANG L , JIA J , et al . Point transformer [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision . October 11-17,2021 , Online . IEEE , 2021 : 16259 - 16268 . doi: 10.1109/iccv48922.2021.01595 http://dx.doi.org/10.1109/iccv48922.2021.01595
THOMAS H , QI C R , DESCHAUD J E , et al . KPConv: flexible and deformable convolution for point clouds [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27 - November 2 , 2019 , Seoul, Korea (South). IEEE , 2019: 6410 - 6419 . doi: 10.1109/iccv.2019.00651 http://dx.doi.org/10.1109/iccv.2019.00651
LI Y , BU R , SUN M , et al . PointCNN: convolution on x-transformed points [J]. Advances in Neural Information Processing Systems , 2018 , 31 : 820 - 830 .
ZHAO H S , JIANG L , FU C W , et al . PointWeb: enhancing local neighborhood features for point cloud processing [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 5560 - 5568 . doi: 10.1109/cvpr.2019.00571 http://dx.doi.org/10.1109/cvpr.2019.00571
ZHANG Y , ZHOU Z X , DAVID P , et al . PolarNet: an improved grid representation for online LiDAR point clouds semantic segmentation [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 9598 - 9607 . doi: 10.1109/cvpr42600.2020.00962 http://dx.doi.org/10.1109/cvpr42600.2020.00962
WU B C , ZHOU X Y , ZHAO S C , et al . SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud [C]. 2019 International Conference on Robotics and Automation (ICRA). 2024,2019 , Montreal, QC, Canada. IEEE , 2019 : 4376 - 4382 . doi: 10.1109/icra.2019.8793495 http://dx.doi.org/10.1109/icra.2019.8793495
YAN X , ZHENG C D , LI Z , et al . PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 5588 - 5597 . doi: 10.1109/cvpr42600.2020.00563 http://dx.doi.org/10.1109/cvpr42600.2020.00563
0
Views
1067
下载量
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution