浏览全部资源
扫码关注微信
1.沈阳理工大学 自动化与电气工程学院,辽宁 沈阳 110159
2.辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
Received:17 May 2021,
Revised:24 June 2021,
Published:25 April 2022
移动端阅览
林森,张强.应用邻域点信息描述与匹配的点云配准[J].光学精密工程,2022,30(08):984-997.
LIN Sen,ZHANG Qiang.Point cloud registration using neighborhood point information description and matching[J].Optics and Precision Engineering,2022,30(08):984-997.
林森,张强.应用邻域点信息描述与匹配的点云配准[J].光学精密工程,2022,30(08):984-997. DOI: 10.37188/OPE.20223008.0984.
LIN Sen,ZHANG Qiang.Point cloud registration using neighborhood point information description and matching[J].Optics and Precision Engineering,2022,30(08):984-997. DOI: 10.37188/OPE.20223008.0984.
点云配准是现代制造业中逆向工程、机器视觉等技术的重要组成部分,其效率和精度对获取的产品数据模型有重要影响。为提高3D物体点云配准的精度和效率,提出一种应用邻域点信息描述与匹配(Neighborhood point information Description and Matching, NDM)的点云配准方法。首先,在三个半径比例下根据点的曲率变化、测量角度和特征值性质提取特征点;其次,计算改进的法向量夹角、点密度和曲率值,获取多尺度矩阵描述符;然后,为描述符建立k维树获取匹配关系,并提出几何特征约束和刚性距离约束组合,剔除错误点对,实现粗配准;最后,通过k维树改进迭代最近点(Iterative Closest Point, ICP)算法完成精确配准。本文设计了实际物体点云配准和斯坦福模型模拟真实物体配准两组实验。结果表明,本文算法解决了经典ICP的局限性,配准精度提高2~5个量级;相较于其他算法,实物点云配准中本文算法的配准精度至少提高29%,效率可提高54%;斯坦福模拟实验中,本文算法的配准精度提高1%~99%,配准耗时降低3%~94%,表明本文算法是一种有效的物体表面点云的配准方法,可以提高配准精度和效率,有较好的鲁棒性。
Point cloud registration is an important part of reverse engineering, machine vision and other technologies in modern manufacturing. Its efficiency and accuracy have an important impact on the acquisition of product data model. In order to improve the accuracy and efficiency of 3D object point cloud registration, a point cloud registration method using Neighborhood point information Description and Matching (NDM) is proposed. Firstly, under three radius ratios, feature points are extracted according to the change of curvature, measurement angle and eigenvalue property; secondly, the improved normal vector angle, point density and curvature are calculated to obtain multi-scale matrix descriptor; then, a k-dimensional tree is established for descriptors, and the matching relationship is preliminarily established. The combination of geometric feature constraint and rigid distance constraint is proposed to eliminate the wrong points; finally, the k-tree improved iterative closest point (ICP) algorithm is used to complete the accurate registration. In this paper, two groups of experiments are designed, which are real object point cloud registration and Stanford model simulation real object registration. The results show that the algorithm solves the limitations of the classical ICP, and improving the registration accuracy by 2
-
5 orders of magnitude. Compared with other algorithms, the registration accuracy of this algorithm is improved by at least 29%, and the efficiency is increased by 58%; in the Stanford database simulation experiment, the registration accuracy is improved by 1%
-
99%, and the registration time is reduced by 3%
-
94%. It is proved that this algorithm is an effective registration method of point cloud on object surface, which can improve the registration accuracy and efficiency, and has good robustness.
LIN X B , ZHOU Y W , LIN C . Study on 3D data mosaic method of point cloud data in reverse engineering [C]. 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). 2224,2021 , Shenyang, China. IEEE , 2021 : 143 - 147 . doi: 10.1109/acctcs52002.2021.00037 http://dx.doi.org/10.1109/acctcs52002.2021.00037
杨稳 , 周明全 , 耿国华 , 等 . 层次优化的颅骨点云配准 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2730 - 2739 . doi: 10.3788/ope.20192712.2730 http://dx.doi.org/10.3788/ope.20192712.2730
YANG W , ZHOU M Q , GENG G H , et al . Hierarchical optimization of skull point cloud registration [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2730 - 2739 . (in Chinese) . doi: 10.3788/ope.20192712.2730 http://dx.doi.org/10.3788/ope.20192712.2730
FENG X L , TAN T R , YUAN Y Z , et al . Aligning point clouds with an effective local feature descriptor [C]. Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health , 2019 : 241 - 255 . doi: 10.1007/978-981-15-1925-3_18 http://dx.doi.org/10.1007/978-981-15-1925-3_18
李新春 , 闫振宇 , 林森 , 等 . 基于邻域特征点提取和匹配的点云配准 [J]. 光子学报 , 2020 , 49 ( 4 ): 0415001 . doi: 10.3788/LOP57.141102 http://dx.doi.org/10.3788/LOP57.141102
LI X C , YAN Z Y , LIN S , et al . Point cloud registration based on neighborhood characteristic point extraction and matching [J]. Acta Photonica Sinica , 2020 , 49 ( 4 ): 0415001 . (in Chinese) . doi: 10.3788/LOP57.141102 http://dx.doi.org/10.3788/LOP57.141102
BESL P J , MCKAY IV N D . Sensor Fusion IV: Control Paradigms and Data Structures [J]. International Society for Optics and Photonics , 1992 , 1611 : 586 - 607 . doi: 10.1117/12.57955 http://dx.doi.org/10.1117/12.57955
CHOI W S , KIM Y S , OH S Y , et al . Fast iterative closest point framework for 3D LIDAR data in intelligent vehicle [C]. 2012 IEEE Intelligent Vehicles Symposium . 37,2012 , Madrid, Spain . IEEE , 2012 : 1029 - 1034 . doi: 10.1109/ivs.2012.6232293 http://dx.doi.org/10.1109/ivs.2012.6232293
LI W M , SONG P F . A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model [J]. Pattern Recognition Letters , 2015 , 65 : 88 - 94 . doi: 10.1016/j.patrec.2015.07.019 http://dx.doi.org/10.1016/j.patrec.2015.07.019
王宾 , 刘林 , 侯榆青 , 等 . 应用改进迭代最近点方法的三维心脏点云配准 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 474 - 484 . doi: 10.3788/OPE.20202802.0474 http://dx.doi.org/10.3788/OPE.20202802.0474
WANG B , LIU L , HOU Y Q , et al . Three-dimensional cardiac point cloud registration by improved iterative closest point method [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 474 - 484 . (in Chinese) . doi: 10.3788/OPE.20202802.0474 http://dx.doi.org/10.3788/OPE.20202802.0474
ZHANG J , YAO Y , DENG B . Fast and robust iterative closest point [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , PP: 2021Jan26;PP. doi: 10.1109/tpami.2021.3054619 http://dx.doi.org/10.1109/tpami.2021.3054619
张琮毅 , 魏子庄 , 徐昊文 , 等 . 尺度可变的快速全局点云配准方法 [J]. 计算机学报 , 2019 , 42 ( 9 ): 1939 - 1952 . doi: 10.11897/SP.J.1016.2019.01939 http://dx.doi.org/10.11897/SP.J.1016.2019.01939
ZHANG C Y , WEI Z Z , XU H W , et al . Scale variable fast global point cloud registration [J]. Chinese Journal of Computers , 2019 , 42 ( 9 ): 1939 - 1952 . (in Chinese) . doi: 10.11897/SP.J.1016.2019.01939 http://dx.doi.org/10.11897/SP.J.1016.2019.01939
GRUEN A , AKCA D . Least squares 3D surface and curve matching [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2005 , 59 ( 3 ): 151 - 174 . doi: 10.1016/j.isprsjprs.2005.02.006 http://dx.doi.org/10.1016/j.isprsjprs.2005.02.006
LU B , WANG Y . Matching algorithm of 3D point clouds based on multiscale features and covariance matrix descriptors [J]. IEEE Access , 2019 , 7 : 137570 - 137582 . doi: 10.1109/access.2019.2943003 http://dx.doi.org/10.1109/access.2019.2943003
LU J , PENG Z T , SU H , et al . Registration algorithm of point clouds based on multiscale normal features [J]. Journal of Electronic Imaging , 2015 , 24 : 013037 . doi: 10.1117/1.jei.24.1.013037 http://dx.doi.org/10.1117/1.jei.24.1.013037
LU J , WANG W , SHAO H X , et al . Point cloud registration algorithm fusing of super 4PCS and ICP based on the key points [C]. 2019 Chinese Control Conference (CCC). 2730,2019 , Guangzhou, China. IEEE , 2019 : 4439 - 4444 . doi: 10.23919/chicc.2019.8866059 http://dx.doi.org/10.23919/chicc.2019.8866059
RUSU R B , MARTON Z C , BLODOW N , et al . Towards 3D Point cloud based object maps for household environments [J]. Robotics and Autonomous Systems , 2008 , 56 ( 11 ): 927 - 941 . doi: 10.1016/j.robot.2008.08.005 http://dx.doi.org/10.1016/j.robot.2008.08.005
XIONG F G , DONG B , HUO W , et al . A local feature descriptor based on rotational volume for pairwise registration of point clouds [J]. IEEE Access , 2020 , 8 : 100120 - 100134 . doi: 10.1109/access.2020.2995369 http://dx.doi.org/10.1109/access.2020.2995369
黄源 , 达飞鹏 , 陶海跻 . 一种基于特征提取的点云自动配准算法 [J]. 中国激光 , 2015 , 42 ( 3 ): 0308002 . doi: 10.3788/cjl201542.0308002 http://dx.doi.org/10.3788/cjl201542.0308002
HUANG Y , DA F P , TAO H J . An automatic registration algorithm for point cloud based on feature extraction [J]. Chinese Journal of Lasers , 2015 , 42 ( 3 ): 0308002 . (in Chinese) . doi: 10.3788/cjl201542.0308002 http://dx.doi.org/10.3788/cjl201542.0308002
李宇翔 , 郭际明 , 潘尚毅 , 等 . 一种基于ISS-SHOT特征的点云配准算法 [J]. 测绘通报 , 2020 ( 4 ): 21 - 26 . doi: 10.3390/s21217177 http://dx.doi.org/10.3390/s21217177
LI Y X , GUO J M , PAN S Y , et al . A point cloud registration algorithm based on ISS-SHOT features [J]. Bulletin of Surveying and Mapping , 2020 ( 4 ): 21 - 26 . (in Chinese) . doi: 10.3390/s21217177 http://dx.doi.org/10.3390/s21217177
0
Views
391
下载量
9
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution