FU Yangfang,YIN Shibai,DENG Zhen,et al.Multi-level features progressive refinement and edge enhancement network for image dehazing[J].Optics and Precision Engineering,2022,30(09):1091-1100.
FU Yangfang,YIN Shibai,DENG Zhen,et al.Multi-level features progressive refinement and edge enhancement network for image dehazing[J].Optics and Precision Engineering,2022,30(09):1091-1100. DOI: 10.37188/OPE.20223009.1091.
Multi-level features progressive refinement and edge enhancement network for image dehazing
An ordinary differential equation (ODE)-based multi-level feature progressive refinement and edge enhancement network is proposed for image dehazing to provide an effective convolutional neural network framework with an algorithm designed to preserve edges while improving accuracy. The study mainly comprises subnetworks of multi-level feature extraction, ODE-based progressive refinement, and edge enhancement. First, the multi-level features extraction subnetwork is leveraged to extract low-level features with detailed information and high-level features with semantic information from hazy images, to enable the subsequent dehazing operations. Second, a novel Leapfrog module is designed based on the relationship between the residual framework and ODE solver by cascading Leapfrog modules to model an approximation solution for ODEs. Finally, the progressive refinement subnetwork is developed. Notably, each Leapfrog module refines the output of the previous Leapfrog with alternative low/high-level features. Finally, motivated by the effectiveness of edge enhancement via second-order differential operators in the edge enhancement network, the edge of the dehazing result predicted by the last Leapfrog module is calculated using the pretrained UNet and added back into dehazing to enhance edges and preserve details. The experimental results demonstrate that the proposed method outperforms the existing methods on both synthetic images and real images quantitatively as well as qualitatively. The dehazing accuracy is improved by 5% and the runtime is only 0.032 s. Hence, the proposed method can be incorporated into practical dehazing applications in engineering.
YANG Y , LIANG X ZH , ZHANG J L . End-to-end image dehazing under separated features and collaborative network [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1931 - 1941 . (in Chinese) . doi: 10.37188/OPE.2021.0003 http://dx.doi.org/10.37188/OPE.2021.0003
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
FENG T , WANG C S , CHEN X W , et al . URNet: a U-Net based residual network for image dehazing [J]. Applied Soft Computing , 2021 , 102 : 106884 . doi: 10.1016/j.asoc.2020.106884 http://dx.doi.org/10.1016/j.asoc.2020.106884
BERMAN D , TREIBITZ T , AVIDAN S . Non-local image dehazing [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition , 2730,2016 , Las Vegas, NV, USA . IEEE , 2016 : 1674 - 1682 . doi: 10.1109/cvpr.2016.185 http://dx.doi.org/10.1109/cvpr.2016.185
PANAGOPOULOS A , WANG C H , SAMARAS D , et al . Estimating shadows with the bright channel cue [C]. Trends and Topics in Computer Vision , 2012 : 1 - 12 . doi: 10.1007/978-3-642-35740-4_1 http://dx.doi.org/10.1007/978-3-642-35740-4_1
YU T , SONG K , MIAO P , et al . Nighttime single image dehazing via pixel-wise alpha blending [J]. IEEE Access , 2019 , 7 : 114619 - 114630 . doi: 10.1109/access.2019.2936049 http://dx.doi.org/10.1109/access.2019.2936049
YIN S B , WANG Y B , YANG Y H . A novel image-dehazing network with a parallel attention block [J]. Pattern Recognition , 2020 , 102 : 107255 . doi: 10.1016/j.patcog.2020.107255 http://dx.doi.org/10.1016/j.patcog.2020.107255
YIN , WANG , YANG . A novel residual dense pyramid network for\r image dehazing [J]. Entropy , 2019 , 21 ( 11 ): 1123 . doi: 10.3390/e21111123 http://dx.doi.org/10.3390/e21111123
SHAO Y J , LI L , REN W Q , et al . Domain adaptation for image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 2805 - 2814 . doi: 10.1109/cvpr42600.2020.00288 http://dx.doi.org/10.1109/cvpr42600.2020.00288
QU Y Y , CHEN Y Z , HUANG J Y , et al . Enhanced Pix2pix dehazing network [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 8152 - 8160 . doi: 10.1109/cvpr.2019.00835 http://dx.doi.org/10.1109/cvpr.2019.00835
WANG C , SHEN H Z , FAN F , et al . EAA-Net: a novel edge assisted attention network for single image dehazing [J]. Knowledge-Based Systems , 2021 , 228 : 107279 . doi: 10.1016/j.knosys.2021.107279 http://dx.doi.org/10.1016/j.knosys.2021.107279
SHEN J W , LI Z Y , YU L , et al . Implicit Euler ODE networks for single-image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1419,2020 , Seattle, WA, USA. IEEE , 2020 : 877 - 886 . doi: 10.1109/cvprw50498.2020.00117 http://dx.doi.org/10.1109/cvprw50498.2020.00117
NAGY Á , OMLE I , KAREEM H , et al . Stable, explicit, leapfrog-hopscotch algorithms for the diffusion equation [J]. Computation , 2021 , 9 ( 8 ): 92 . doi: 10.3390/computation9080092 http://dx.doi.org/10.3390/computation9080092
WANG W X , ZHAO H . Haze traffic image enhancement based on improved retinex and adaptive fractional differential [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1820 - 1834 . (in Chinese) . doi: 10.3788/OPE.20202808.1820 http://dx.doi.org/10.3788/OPE.20202808.1820
LI B , REN W , FU D , et al . Benchmarking single image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2018 , 28 ( 1 ): 492 - 505 . doi: 10.1109/tip.2018.2867951 http://dx.doi.org/10.1109/tip.2018.2867951
ZHANG H , PATEL V M . Densely connected pyramid dehazing network [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition , 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 3194 - 3203 . doi: 10.1109/cvpr.2018.00337 http://dx.doi.org/10.1109/cvpr.2018.00337
XU Z X , WU K , HUANG L , et al . Cloudy image arithmetic: a cloudy scene synthesis paradigm with an application to deep-learning-based thin cloud removal [J]. IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 16 . doi: 10.1109/tgrs.2021.3122253 http://dx.doi.org/10.1109/tgrs.2021.3122253