JING Ning,YAO Dingyi,WANG Zhibin,et al.High frequency signal reconstruction based on compressive sensing and equivalent-time sampling[J].Optics and Precision Engineering,2022,30(10):1240-1245.
JING Ning,YAO Dingyi,WANG Zhibin,et al.High frequency signal reconstruction based on compressive sensing and equivalent-time sampling[J].Optics and Precision Engineering,2022,30(10):1240-1245. DOI: 10.37188/OPE.20223010.1240.
High frequency signal reconstruction based on compressive sensing and equivalent-time sampling
A simple harmonic wave with frequency 10–100 GHz is collected by a domestic equivalence time optical sampling oscilloscope to measure and recover high-frequency signals in undersampling situations. There is a trigger sequence with a 5 ps delay resolution and 10 μs dynamic range in the oscilloscope. The trigger sequence, generated by two steps of coarse and fine delayers, is used to drive the high band-wide sampler, and the sampling value is output by an ADC with a frequency of 50 kHz. In this advancement, the high-frequency signal is sampled with an increasing 5 ps delay every 20 μs. The compress ratio is approximately 10
6
, and the sampling rate is far below the Nyquist law. With compressive sensing theory, the measurement matrix is constructed by Fourier translation and equivalence time sampling sequence and sparsify the signal measurement process. The measurement signal is reconstructed by solving an L1-norm minimum problem. The results demonstrate that the signal with a frequency of 100 GHz can be undersampled and reconstructed with a mean square error below 5×10
-
5
, implying that the dynastic range of the sampling oscilloscope should be expanded.
关键词
Keywords
references
IMAI T , KITAO K , TRAN N , et al . Development of high frequency band over 6 GHz for 5G mobile communication systems [C]. 2015 9th European Conference on Antennas and Propagation (EuCAP). 1317,2015 , Lisbon, Portugal. IEEE , 2015 : 1 - 4 . doi: 10.1109/eucap.2016.7481469 http://dx.doi.org/10.1109/eucap.2016.7481469
LI Z Y . Research on synchronous transmission of optical communication video based on 5G technology [J]. Laser Journal , 2021 , 42 ( 8 ): 98 - 103 . (in Chinese) . doi: 10.14016/j.cnki.jgzz.2021.08.098 http://dx.doi.org/10.14016/j.cnki.jgzz.2021.08.098
LIU C W , YU J J . A new scheme of D-band mm-wave vector signal generation with simple structure [J]. Acta Optica Sinica , 2021 , 41 ( 4 ): 0406001 . (in Chinese) . doi: 10.3788/aos202141.0406001 http://dx.doi.org/10.3788/aos202141.0406001
YAN J Y , DENG X , LAN A L , et al . The digital beam forming technique in AgileDARN high-frequency radar [J]. Polar Science , 2021 , 28 : 100595 . doi: 10.1016/j.polar.2020.100595 http://dx.doi.org/10.1016/j.polar.2020.100595
HE G , QU P F , SUN L J . Application status and trend of microwave photonic technology [J]. Semiconductor Optoelectronics , 2017 , 38 ( 5 ): 627 - 632 . (in Chinese) . doi: 10.16818/j.issn1001-5868.2017.05.001 http://dx.doi.org/10.16818/j.issn1001-5868.2017.05.001
RAJ K , SHUBIN I , CUNNINGHAM J E . Chip package to support high-frequency processors : US8982563 [P]. 2015-03-17 . doi: 10.1109/ectc.2015.7159764 http://dx.doi.org/10.1109/ectc.2015.7159764
LIU Q , LI P , KAI C , et al . Short-time prediction of chaotic laser using time-delayed photonic reservoir computing [J]. Acta Physica Sinica , 2021 , 70 ( 15 ): 154209 . (in Chinese) . doi: 10.7498/aps.70.20210355 http://dx.doi.org/10.7498/aps.70.20210355
CANDES E J , ROMBERG J , TAO T . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 - 509 . doi: 10.1109/tit.2005.862083 http://dx.doi.org/10.1109/tit.2005.862083
DONOHO D L . Compressed sensing [J]. IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 . doi: 10.1109/tit.2006.871582 http://dx.doi.org/10.1109/tit.2006.871582
DUARTE M F , DAVENPORT M A , TAKHAR D , et al . Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 83 - 91 . doi: 10.1109/msp.2007.914730 http://dx.doi.org/10.1109/msp.2007.914730
JING N , YU C , LI K W , et al . Compressive sensing absorption spectroscopy based on photoelastic modulation and single-pixel detection [J]. IEEE Sensors Journal , 2021 , 21 ( 8 ): 9885 - 9889 . doi: 10.1109/jsen.2021.3057588 http://dx.doi.org/10.1109/jsen.2021.3057588
CHEN M H , WANG F , ZHANG C X , et al . Sparse reconstruction of frequency domain OCT image based on compressed sensing [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 189 - 199 . (in Chinese) . doi: 10.3788/ope.20202801.0189 http://dx.doi.org/10.3788/ope.20202801.0189
WILLIAMS D , HALE P , REMLEY K A . The sampling oscilloscope as a microwave instrument [J]. IEEE Microwave Magazine , 2007 , 8 ( 4 ): 59 - 68 . doi: 10.1109/mmw.2007.383954 http://dx.doi.org/10.1109/mmw.2007.383954
SASAKI Y , ZHAO Y J , KUWANA A , et al . Highly efficient waveform acquisition condition in equivalent-time sampling system [C]. 2018 IEEE 27th Asian Test Symposium . 1518,2018 , Hefei, China . IEEE , 2018 : 197 - 202 . doi: 10.1109/ats.2018.00045 http://dx.doi.org/10.1109/ats.2018.00045
JING N , MIDIDODDI C K , WANG C . Compressive sensing detection of RF signals by all-optically generated binary random patterns [C]. 2019 IEEE 2nd British and Irish Conference on Optics and Photonics . 1113,2019 , London, UK . IEEE , 2019 : 1 - 4 . doi: 10.1109/bicop48819.2019.9059595 http://dx.doi.org/10.1109/bicop48819.2019.9059595