浏览全部资源
扫码关注微信
1.西南交通大学 机械工程学院, 四川 成都 610031
2.浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
3.四川大学 机械工程学院, 四川 成都 610065
4.重庆遨博智能科技研究院有限公司, 重庆 400050
5.衢州学院 浙江省空气动力装备技术重点实验室, 浙江 衢州 324000
Received:29 November 2021,
Revised:21 January 2022,
Published:25 June 2022
移动端阅览
周琳丰,付国强,李正堂等.机床主轴热误差通用型温度敏感点组合选取[J].光学精密工程,2022,30(12):1462-1477.
ZHOU Linfeng,FU Guoqiang,LI Zhengtang,et al.General-purpose temperature sensitive point combination selection for thermal error of machine tool spindle[J].Optics and Precision Engineering,2022,30(12):1462-1477.
周琳丰,付国强,李正堂等.机床主轴热误差通用型温度敏感点组合选取[J].光学精密工程,2022,30(12):1462-1477. DOI: 10.37188/OPE.20223012.1462.
ZHOU Linfeng,FU Guoqiang,LI Zhengtang,et al.General-purpose temperature sensitive point combination selection for thermal error of machine tool spindle[J].Optics and Precision Engineering,2022,30(12):1462-1477. DOI: 10.37188/OPE.20223012.1462.
本文提出一种基于数量自动确定的机床主轴热误差通用型温度敏感点组合选取方法以解决敏感点数量的选取依赖人工经验的问题。首先,计算各温度变量与热误差之间的绝对均相关系数以评估各温度点对主轴热误差的相关程度。其次,将绝对均相关系数最大的温度点作为K-Means++聚类算法的首个初始聚类中心,进一步选取一系列数量不同的温度敏感点组合。然后,将所得的一系列敏感点组合和热误差作为输入,建立反向传播(Back Propagation, BP)神经网络热误差模型,并通过评价指标选取预测性能最优的温度敏感点组合。最后,在VMC850数控机床上进行了最优温度敏感点组合在不同工况相同误差项、相同工况不同误差项中的有效性以及在不同热误差模型中的通用性验证。结果表明,本文提出的温度敏感点组合选取法适用于不同工况下的误差预测,且在不同的热误差模型中具有良好的通用性。
A general temperature-sensitive point combination selection method based on the automatic determination of the points is proposed in this paper to solve the problem of selecting sensitive points depending on manual experience. First, the absolute mean correlation coefficients between temperature variables and thermal errors are calculated for selecting the temperature points most related to the thermal errors as sensitive points. Second, the temperature point with the largest absolute mean correlation coefficient is considered as the initial clustering center of the K-Means++ clustering algorithm, and a series of temperature-sensitive points with different numbers is selected. Subsequently, a backpropagation neural network thermal error model is established by using a series of sensitive point combinations and thermal errors as input, and the temperature-sensitive point combinations with the best prediction performance are selected based on evaluation indexes. Finally, the validity of the optimal temperature-sensitive point combination for the same error terms under different working conditions and different error terms under the same working conditions and the universality of different thermal error models are verified by employing the VMC850 CNC machine tool. The results show that the combined selection method of temperature-sensitive points proposed in this paper is suitable for experimental data under different working conditions and exhibits good versatility in different thermal error models.
李晓雷 . 高档数控车床的可靠性设计及试验技术研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2020 .
LI X L . The Research of Reliability Design and Test Technology for High Grade CNC Lathes [D]. Harbin : Harbin Institute of Technology , 2020 . (in Chinese)
孙勇 , 曾黄麟 . 一种新的数控机床热误差实时补偿方法 [J]. 机械设计与制造 , 2010 ( 1 ): 244 - 246 . doi: 10.3969/j.issn.1001-3997.2010.01.103 http://dx.doi.org/10.3969/j.issn.1001-3997.2010.01.103
SUN Y , ZENG H L . A new approach of thermal error compensation on NC machine tools [J]. Machinery Design & Manufacture , 2010 ( 1 ): 244 - 246 . (in Chinese) . doi: 10.3969/j.issn.1001-3997.2010.01.103 http://dx.doi.org/10.3969/j.issn.1001-3997.2010.01.103
HUANG S G , FENG P F , XU C , et al . Utilization of heat quantity to model thermal errors of machine tool spindle [J]. The International Journal of Advanced Manufacturing Technology , 2018 , 97 ( 5/6/7/8 ): 1733 - 1743 . doi: 10.1007/s00170-018-2051-5 http://dx.doi.org/10.1007/s00170-018-2051-5
MAYR J , JEDRZEJEWSKI J , UHLMANN E , et al . Thermal issues in machine tools [J]. CIRP Annals , 2012 , 61 ( 2 ): 771 - 791 . doi: 10.1016/j.cirp.2012.05.008 http://dx.doi.org/10.1016/j.cirp.2012.05.008
LI Y , ZHAO W H , LAN S H , et al . A review on spindle thermal error compensation in machine tools [J]. International Journal of Machine Tools and Manufacture , 2015 , 95 : 20 - 38 . doi: 10.1016/j.ijmachtools.2015.04.008 http://dx.doi.org/10.1016/j.ijmachtools.2015.04.008
ABDULSHAHED A M , LONGSTAFF A , FLETCHER S , et al . Comparative study of ANN and ANFIS prediction models for thermal error compensation on CNC machine tools [J]. Lamdamap 10th International Conference , 2013 , 978 : 79 - 89 . doi: 10.1109/ukci.2014.6930155 http://dx.doi.org/10.1109/ukci.2014.6930155
SANTOS M O , BATALHA G F , BORDINASSI E C , et al . Numerical and experimental modeling of thermal errors in a five-axis CNC machining center [J]. The International Journal of Advanced Manufacturing Technology , 2018 , 96 ( 5/6/7/8 ): 2619 - 2642 . doi: 10.1007/s00170-018-1595-8 http://dx.doi.org/10.1007/s00170-018-1595-8
邓小雷 , 戴温克 , 周翎飞 , 等 . 数控机床主轴-立柱系统热态特性分析与测试 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 601 - 609 . doi: 10.3788/ope.20202803.0601 http://dx.doi.org/10.3788/ope.20202803.0601
DENG X L , DAI W K , ZHOU L F , et al . Thermal characteristics analysis and test of spindle-column system for CNC machine tool [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 601 - 609 . (in Chinese) . doi: 10.3788/ope.20202803.0601 http://dx.doi.org/10.3788/ope.20202803.0601
魏新园 , 陈雨尘 , 苗恩铭 , 等 . 主成分算法在数控机床主轴热误差补偿中的应用 [J]. 光学 精密工程 , 2021 , 29 ( 11 ): 2649 - 2660 . doi: 10.37188/OPE.20212911.2649 http://dx.doi.org/10.37188/OPE.20212911.2649
WEI X Y , CHEN Y C , MIAO E M , et al . Application of principal component algorithm in spindle thermal error modeling of CNC machine tools [J]. Opt. Precision Eng. , 2021 , 29 ( 11 ): 2649 - 2660 . (in Chinese) . doi: 10.37188/OPE.20212911.2649 http://dx.doi.org/10.37188/OPE.20212911.2649
王海同 , 李铁民 , 王立平 , 等 . 机床热误差建模研究综述 [J]. 机械工程学报 , 2015 , 51 ( 9 ): 119 - 128 . doi: 10.3901/JME.2015.09.119 http://dx.doi.org/10.3901/JME.2015.09.119
WANG H T , LI T M , WANG L P , et al . Review on thermal error modeling of machine tools [J]. Journal of Mechanical Engineering , 2015 , 51 ( 9 ): 119 - 128 . (in Chinese) . doi: 10.3901/JME.2015.09.119 http://dx.doi.org/10.3901/JME.2015.09.119
ABDULSHAHED A M , LONGSTAFF A P , FLETCHER S , et al . Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera [J]. Applied Mathematical Modelling , 2015 , 39 ( 7 ): 1837 - 1852 . doi: 10.1016/j.apm.2014.10.016 http://dx.doi.org/10.1016/j.apm.2014.10.016
ABDULSHAHED A M , LONGSTAFF A P , FLETCHER S , et al . Thermal error modelling of a gantry-type 5-axis machine tool using a Grey Neural Network Model [J]. Journal of Manufacturing Systems , 2016 , 41 : 130 - 142 . doi: 10.1016/j.jmsy.2016.08.006 http://dx.doi.org/10.1016/j.jmsy.2016.08.006
TSAI P C , CHENG C C , CHEN W J , et al . Sensor placement methodology for spindle thermal compensation of machine tools [J]. The International Journal of Advanced Manufacturing Technology , 2020 , 106 ( 11/12 ): 5429 - 5440 . doi: 10.1007/s00170-020-04932-8 http://dx.doi.org/10.1007/s00170-020-04932-8
TAN F , YIN M , WANG L , et al . Spindle thermal error robust modeling using LASSO and LS-SVM [J]. The International Journal of Advanced Manufacturing Technology , 2018 , 94 ( 5/6/7/8 ): 2861 - 2874 . doi: 10.1007/s00170-017-1096-1 http://dx.doi.org/10.1007/s00170-017-1096-1
LIU Y S , MIAO E M , LIU H , et al . Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology [J]. The International Journal of Advanced Manufacturing Technology , 2020 , 106 ( 1/2 ): 655 - 669 . doi: 10.1007/s00170-019-04482-8 http://dx.doi.org/10.1007/s00170-019-04482-8
李彬 , 张云 , 王立平 , 等 . 基于遗传算法优化小波神经网络数控机床热误差建模 [J]. 机械工程学报 , 2019 , 55 ( 21 ): 215 - 220 . doi: 10.3901/JME.2019.21.215 http://dx.doi.org/10.3901/JME.2019.21.215
LI B , ZHANG Y , WANG L P , et al . Modeling for CNC machine tool thermal error based on genetic algorithm optimization wavelet neural networks [J]. Journal of Mechanical Engineering , 2019 , 55 ( 21 ): 215 - 220 . (in Chinese) . doi: 10.3901/JME.2019.21.215 http://dx.doi.org/10.3901/JME.2019.21.215
MA C , ZHAO L , MEI X S , et al . Thermal error compensation of high-speed spindle system based on a modified BP neural network [J]. The International Journal of Advanced Manufacturing Technology , 2017 , 89 ( 9/10/11/12 ): 3071 - 3085 . doi: 10.1007/s00170-016-9254-4 http://dx.doi.org/10.1007/s00170-016-9254-4
LIU J L , MA C , WANG S L . Data-driven thermal error compensation of linear x-axis of worm gear machines with error mechanism modeling [J]. Mechanism and Machine Theory , 2020 , 153 : 104009 . doi: 10.1016/j.mechmachtheory.2020.104009 http://dx.doi.org/10.1016/j.mechmachtheory.2020.104009
YIN Q , TAN F , CHEN H X , et al . Spindle thermal error modeling based on selective ensemble BP neural networks [J]. The International Journal of Advanced Manufacturing Technology , 2019 , 101 ( 5/6/7/8 ): 1699 - 1713 . doi: 10.1007/s00170-018-2994-6 http://dx.doi.org/10.1007/s00170-018-2994-6
LIU K , WU J K , LIU H B , et al . Reliability analysis of thermal error model based on DBN and Monte Carlo method [J]. Mechanical Systems and Signal Processing , 2021 , 146 : 107020 . doi: 10.1016/j.ymssp.2020.107020 http://dx.doi.org/10.1016/j.ymssp.2020.107020
VASSILVITSKII S , ARTHUR D . K-means++: the advantages of careful seeding [C]. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007 : 1027 - 1035 .
LI B , TIAN X T , ZHANG M . Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network [J]. The International Journal of Advanced Manufacturing Technology , 2019 , 105 ( 1/2/3/4 ): 1497 - 1505 . doi: 10.1007/s00170-019-04375-w http://dx.doi.org/10.1007/s00170-019-04375-w
LIU Y , WANG X F , ZHU X G , et al . Thermal error prediction of motorized spindle for five-axis machining center based on analytical modeling and BP neural network [J]. Journal of Mechanical Science and Technology , 2021 , 35 ( 1 ): 281 - 292 . doi: 10.1007/s12206-020-1228-7 http://dx.doi.org/10.1007/s12206-020-1228-7
MA C , ZHAO L , MEI X S , et al . Thermal error compensation of high-speed spindle system based on a modified BP neural network [J]. The International Journal of Advanced Manufacturing Technology , 2017 , 89 ( 9/10/11/12 ): 3071 - 3085 . doi: 10.1007/s00170-016-9254-4 http://dx.doi.org/10.1007/s00170-016-9254-4
国家质量监督检验检疫总局 , 中国国家标准化管理委员会 . 机床检验通则 第3部分:热效应的确定 : GB/T 17421.3-2009 [S]. 北京 : 中国标准出版社 , 2010 . doi: 10.3969/j.issn.1002-7203.2014.04.003 http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
General Administration of Quality Supervision , Inspection and Quarantine of the People's Republic of China , Standardization Administration of the People's Republic of China . Test code for machine tools - Part 3: determination of thermal effects : GB/T 17421.3-2009 [S]. Beijing : Standards Press of China , 2010 . (in Chinese) . doi: 10.3969/j.issn.1002-7203.2014.04.003 http://dx.doi.org/10.3969/j.issn.1002-7203.2014.04.003
0
Views
1184
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution