Non-Maximum Suppression (NMS) is a post-processing algorithm used for object detection. It selects optimal bounding boxes from the bounding boxes set and suppresses other bounding boxes. NMS selects the bounding box with the highest score of classification confidence as the optimal bounding box. However, it ignores the correlation between localization accuracy and the classification confidence score. The classification confidence score cannot effectively represent the localization accuracy. This paper proposes a novel Relocation Non-Maximum Suppression (R-NMS) algorithm to solve the above-mentioned problem. First, the bounding box with the highest score of classification confidence in the bounding boxes set is selected as the optimal bounding box. Second, a new box distance measurement method is proposed based on R-NMS instead of using Intersection over Union (IoU) to measure the distance between the bounding boxes. Then, the location information of the bounding boxes around the optimal bounding box is obtained. Finally, the location information is used to relocate the optimal bounding box to obtain the new optimal bounding box. Compared with NMS and Soft-NMS, the mAP of R-NMS on YOLOv3 increased by 0.7 % and 0.5 %, respectively. The mAP of R-NMS on Faster-RCNN is 80.83 %, and the effectiveness of the proposed algorithm in the improvement of the mAP of various object detectors is confirmed.
关键词
Keywords
references
WU X W , SAHOO D , HOI S C H . Recent advances in deep learning for object detection [J]. Neurocomputing , 2020 , 396 : 39 - 64 . doi: 10.1016/j.neucom.2020.01.085 http://dx.doi.org/10.1016/j.neucom.2020.01.085
SUN Y N , XUE B , ZHANG M J , et al . Automatically designing CNN architectures using the genetic algorithm for image classification [J]. IEEE Transactions on Cybernetics , 2020 , 50 ( 9 ): 3840 - 3854 . doi: 10.1109/tcyb.2020.2983860 http://dx.doi.org/10.1109/tcyb.2020.2983860
LIU Y , WU Y H , WEN P S , et al . Leveraging instance-, image- and dataset-level information for weakly supervised instance segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 3 ): 1415 - 1428 . doi: 10.1109/tpami.2020.3023152 http://dx.doi.org/10.1109/tpami.2020.3023152
CHENG Q M , ZHANG Q , FU P , et al . A survey and analysis on automatic image annotation [J]. Pattern Recognition , 2018 , 79 : 242 - 259 . doi: 10.1016/j.patcog.2018.02.017 http://dx.doi.org/10.1016/j.patcog.2018.02.017
CIAPARRONE G , LUQUE SÁNCHEZ F , TABIK S , et al . Deep learning in video multi-object tracking: a survey [J]. Neurocomputing , 2020 , 381 : 61 - 88 . doi: 10.1016/j.neucom.2019.11.023 http://dx.doi.org/10.1016/j.neucom.2019.11.023
GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation [C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition . 2328,2014 , Columbus , OH , USA . IEEE , 2014 : 580 - 587 . doi: 10.1109/cvpr.2014.81 http://dx.doi.org/10.1109/cvpr.2014.81
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM , 2017 , 60 ( 6 ): 84 - 90 . doi: 10.1145/3065386 http://dx.doi.org/10.1145/3065386
WAN S H , GOUDOS S . Faster R-CNN for multi-class fruit detection using a robotic vision system [J]. Computer Networks , 2020 , 168 : 107036 . doi: 10.1016/j.comnet.2019.107036 http://dx.doi.org/10.1016/j.comnet.2019.107036
WANG N , GAO Y , CHEN H , et al . NAS-FCOS: efficient search for object detection architectures [J]. International Journal of Computer Vision , 2021 , 129 ( 12 ): 3299 - 3312 . doi: 10.1007/s11263-021-01523-2 http://dx.doi.org/10.1007/s11263-021-01523-2
JU M R , LUO H B , LIU G Q , et al . Infrared dim and small target detection network based on spatial attention mechanism [J]. Optics and Precision Engineering , 2021 , 29 ( 4 ): 843 - 853 . (in Chinese) . doi: 10.37188/OPE.20212904.0843 http://dx.doi.org/10.37188/OPE.20212904.0843
MA L , GONG X T , OUYANG H K . Improvement of Tiny YOLOV 3 target detection [J]. Optics and Precision Engineering , 2020 , 28 ( 4 ): 988 - 995 . (in Chinese)
NEUBECK A , GOOL LVAN . Efficient non-maximum suppression [C]. 18th International Conference on Pattern Recognition (ICPR' 06 ). 2024,2006 , Hong Kong, China. IEEE , 2006: 850 - 855 .
QIU S H , WEN G J , DENG Z P , et al . Accurate non-maximum suppression for object detection in high-resolution remote sensing images [J]. Remote Sensing Letters , 2018 , 9 ( 3 ): 237 - 246 . doi: 10.1080/2150704x.2017.1415473 http://dx.doi.org/10.1080/2150704x.2017.1415473
HE Y H , ZHU C C , WANG J R , et al . Bounding box regression with uncertainty for accurate object detection [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 2883 - 2892 . doi: 10.1109/cvpr.2019.00300 http://dx.doi.org/10.1109/cvpr.2019.00300
MA W C , LI K D , WANG G H . Location-aware box reasoning for anchor-based single-shot object detection [J]. IEEE Access , 8 : 129300 - 129309 .
Jiang B , Luo R , Mao J , et al . Acquisition of Localization Confidence for Accurate Object Detection [C]. Proceedings of the European Conference on Computer Vision. 814,2018 , Munich, Germany. Springer , 2018 : 784 - 799 . doi: 10.1007/978-3-030-01264-9_48 http://dx.doi.org/10.1007/978-3-030-01264-9_48
ZENG J X , XIONG J L , FU X , et al . ReFPN-FCOS: one-stage object detection for feature learning and accurate localization [J]. IEEE Access , 8 : 225052 - 225063 .
LIU S T , HUANG D , WANG Y H . Adaptive NMS: refining pedestrian detection in a crowd [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 6452 - 6461 . doi: 10.1109/cvpr.2019.00662 http://dx.doi.org/10.1109/cvpr.2019.00662
ZHENG Z H , WANG P , LIU W , et al . Distance-IoU loss: faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 12993 - 13000 . doi: 10.1609/aaai.v34i07.6999 http://dx.doi.org/10.1609/aaai.v34i07.6999
BODLA N , SINGH B , CHELLAPPA R , et al . Soft-NMS-improving object detection with one line of code [C]. 2017 IEEE International Conference on Computer Vision . 2229,2017 , Venice, Italy . IEEE , 2017 : 5562 - 5570 . doi: 10.1109/iccv.2017.593 http://dx.doi.org/10.1109/iccv.2017.593
Real-time super-resolution for infrared dynamic object video based on airborne platform
YOLOv8 model-based additive manufacturing micro porosity defect detection and its dimension measurement
Audio object detection network with multimodal cross level feature knowledge transfer
Semi-supervised instance object detection method based on SVD co-training
Design of channel attention network and system for micro target measurement
Related Author
ZHU Deyan
XU Jiayi
AO Yongqi
CAI Yindi
ZHANG Dianpeng
SUN Zimeng
WANG Yuxuan
ZHU Xianglong
Related Institution
College of Astronautics, Nanjing University of Aeronautics and Astronautics
Key Laboratory of Space Photoelectric Detection and Sensing of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics
College of Mechanical Engineering, Dalian University of Technology
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University
Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, Institute of Instrumentation Science and Opto-electronics Engineering, Beihang University