浏览全部资源
扫码关注微信
1.重庆大学 新型微纳器件与系统技术重点学科实验室&光电技术与 系统教育部重点实验室,重庆 400044
2.重庆大学 化学化工学院,重庆 400044
3.重庆大学 光电工程学院,重庆 400044
4.重庆大学肿瘤医院 癌症转移与个体化治疗转化研究重点实验室,重庆 400030
E-mail: xuyibbd@cqu.edu.cn
Received:09 March 2022,
Revised:10 May 2022,
Published:25 July 2022
移动端阅览
李世芳,何红,葛闯等.集成纳米增强基底的微流控SERS芯片及其致病菌检测[J].光学精密工程,2022,30(14):1643-1656.
LI Shifang,HE Hong,GE Chuang,et al.Nano-reinforced substrate integration in SERS microfluidic chip for bacteria detection[J].Optics and Precision Engineering,2022,30(14):1643-1656.
李世芳,何红,葛闯等.集成纳米增强基底的微流控SERS芯片及其致病菌检测[J].光学精密工程,2022,30(14):1643-1656. DOI: 10.37188/OPE.20223014.1643.
LI Shifang,HE Hong,GE Chuang,et al.Nano-reinforced substrate integration in SERS microfluidic chip for bacteria detection[J].Optics and Precision Engineering,2022,30(14):1643-1656. DOI: 10.37188/OPE.20223014.1643.
针对致病菌快速高效的辨识和检测一直是生命科学、医疗诊断、食品安全和环境监测等领域备受关注的热点。微流控芯片分析技术为细菌等微生物的研究和检测提供了新的、高效的途径和平台,将表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS)光谱检测技术与其结合,成为了具有突出优势的致病菌快速鉴别和检测途径。本文针对基于微流控芯片的SERS分析技术及其应用进行综述,首先对各种SERS增强基底材料进行了介绍和性能比较;然后,系统综述了在微流控芯片上集成SERS基底的方法和技术,分别探讨了在微流控通道中注入纳米金属溶胶的外部注入法,在微流控芯片检测区构建固体纳米结构的内嵌法和在微流控通道中原位制备纳米结构基底的原位制作法;最后,对集成SERS检测技术的微流控芯片分析方法在致病菌定性鉴别和定量检测方面的应用进展予以了综述和展望。
The rapid and efficient detection and identification of pathogenic bacteria have long been the focus of many research fields, such as life sciences, medical diagnosis, food safety, and environmental monitoring. Microfluidic chip analysis technology provides efficient methods and platforms for the research and detection of bacteria and other microorganisms. The combination of microfluidic chips and surface-enhanced Raman scattering (SERS) spectroscopy detection technology provides many advantages and allows rapid identification and detection of pathogenic bacteria in biological samples. In this paper, we review the SERS analysis technology and its applications in microfluidic chip analysis. First, we introduce improved substrate materials for SERS and compare their effectiveness. The methods and techniques used to integrate SERS substrates on microfluidic chips are then systematically reviewed. Next, we discuss methods for the external injection of a nano metal sol into the microfluidic channel, embedding a solid nano structure in the microfluidic chip detection area, and the in-situ fabrication of nano structure substrates in the microfluidic channel. Finally, we provide an overview of the progress and future prospects of the application of the microfluidic chip analysis method integrated with SERS detection technology for the identification and quantitative detection of pathogenic bacteria.
梁金姬 , 宋德涵 , 李韵辞 , 等 . 金黄色葡萄球菌检测方法研究进展 [J]. 山东化工 , 2015 , 44 ( 10 ): 41 - 42 . doi: 10.3969/j.issn.1008-021X.2015.10.013 http://dx.doi.org/10.3969/j.issn.1008-021X.2015.10.013
LIANG J J , SONG D H , LI Y C , et al . Research progress on detection methods of staphylococcus aureus [J]. Shandong Chemical Industry , 2015 , 44 ( 10 ): 41 - 42 . (in Chinese) . doi: 10.3969/j.issn.1008-021X.2015.10.013 http://dx.doi.org/10.3969/j.issn.1008-021X.2015.10.013
AVANBELKUM , DURAND G , PEYRET M , et al . Rapid clinical bacteriology and its future impact [J]. Annals of Laboratory Medicine , 2013 , 33 ( 1 ): 14 - 27 . doi: 10.3343/alm.2013.33.1.14 http://dx.doi.org/10.3343/alm.2013.33.1.14
ALI A A , ALTEMIMI A B , ALHELFI N , et al . Application of biosensors for detection of pathogenic food bacteria: a review [J]. Biosensors , 2020 , 10 ( 6 ): 58 . doi: 10.3390/bios10060058 http://dx.doi.org/10.3390/bios10060058
王品一 , 万福 , 王建新 , 等 . 注入锁定腔增强拉曼光谱微量气体检测技术 [J]. 光学 精密工程 , 2018 , 26 ( 8 ): 1917 - 1924 . doi: 10.3788/ope.20182608.1917 http://dx.doi.org/10.3788/ope.20182608.1917
WANG P Y , WAN F , WANG J X , et al . Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking [J]. Opt. Precision Eng. , 2018 , 26 ( 8 ): 1917 - 1924 . (in Chinese) . doi: 10.3788/ope.20182608.1917 http://dx.doi.org/10.3788/ope.20182608.1917
任斌 , 田中群 . 表面增强拉曼光谱的研究进展 [J]. 现代仪器 , 2004 , 10 ( 5 ): 1 - 8, 13 . doi: 10.3969/j.issn.1672-7916.2004.05.001 http://dx.doi.org/10.3969/j.issn.1672-7916.2004.05.001
REN B , TIAN Z Q . The progress in surface-enhanced Raman spectroscopy [J]. Modern Instruments , 2004 , 10 ( 5 ): 1 - 8, 13 . (in Chinese) . doi: 10.3969/j.issn.1672-7916.2004.05.001 http://dx.doi.org/10.3969/j.issn.1672-7916.2004.05.001
GALVAN D D , YU Q M . Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria [J]. Advanced Healthcare Materials , 2018 , 7 ( 13 ): e1701335 . doi: 10.1002/adhm.201701335 http://dx.doi.org/10.1002/adhm.201701335
EFRIMA S , ZEIRI L . Understanding SERS of bacteria [J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering , 2009 , 40 ( 3 ): 277 - 288 . doi: 10.1002/jrs.2121 http://dx.doi.org/10.1002/jrs.2121
NGE P N , ROGERS C I , WOOLLEY A T . Advances in microfluidic materials, functions, integration, and applications [J]. Chemical Reviews , 2013 , 113 ( 4 ): 2550 - 2583 . doi: 10.1021/cr300337x http://dx.doi.org/10.1021/cr300337x
WALTER A , MÄRZ A , SCHUMACHER W , et al . Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device [J]. Lab on a Chip , 2011 , 11 ( 6 ): 1013 - 1021 . doi: 10.1039/c0lc00536c http://dx.doi.org/10.1039/c0lc00536c
MOSKOVITS M . Surface-enhanced spectroscopy [J]. Reviews of Modern Physics , 1985 , 57 ( 3 ): 783 - 826 . doi: 10.1103/revmodphys.57.783 http://dx.doi.org/10.1103/revmodphys.57.783
KNEIPP K , KNEIPP H , ITZKAN I , et al . Surface-enhanced Raman scattering and biophysics [J]. Journal of Physics: Condensed Matter , 2002 , 14 ( 18 ): R597 - R624 . doi: 10.1088/0953-8984/14/18/202 http://dx.doi.org/10.1088/0953-8984/14/18/202
WU D Y , LI J F , REN B , et al . Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews , 2008 , 37 ( 5 ): 1025 . doi: 10.1039/b707872m http://dx.doi.org/10.1039/b707872m
LEE C W , TSENG F G . Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis [J]. Biomicrofluidics , 2018 , 12 ( 1 ): 011502 . doi: 10.1063/1.5012909 http://dx.doi.org/10.1063/1.5012909
DING S Y , YI J , LI J F , et al . Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials [J]. Nature Reviews Materials , 2016 , 1 : 16021 . doi: 10.1038/natrevmats.2016.21 http://dx.doi.org/10.1038/natrevmats.2016.21
YANG B , WANG Y , GUO S , et al . Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering [J]. Bulletin of the Korean Chemical Society , 2021 , 42 ( 11 ): 1411 - 1418 . doi: 10.1002/bkcs.12387 http://dx.doi.org/10.1002/bkcs.12387
TIAN F , BONNIER F , CASEY A , et al . Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape [J]. Analytical Methods , 2014 , 6 : 9116 - 9123 . doi: 10.1039/c4ay02112f http://dx.doi.org/10.1039/c4ay02112f
张倩 , 苏碧云 , 黄剑 . 基于LSPR效应的高活性SERS基底研究进展 [J]. 应用化工 , 2020 , 49 ( 3 ): 709 - 714 . doi: 10.3969/j.issn.1671-3206.2020.03.040 http://dx.doi.org/10.3969/j.issn.1671-3206.2020.03.040
ZHANG Q , SU B Y , HUANG J . Research progress on preparation of high active substrate base LSPR effect [J]. Applied Chemical Industry , 2020 , 49 ( 3 ): 709 - 714 . (in Chinese) . doi: 10.3969/j.issn.1671-3206.2020.03.040 http://dx.doi.org/10.3969/j.issn.1671-3206.2020.03.040
ZHOU X , HU Z W , YANG D T , et al . Bacteria detection: from powerful SERS to its advanced compatible techniques [J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) , 2020 , 7 ( 23 ): 2001739 . doi: 10.1002/advs.202001739 http://dx.doi.org/10.1002/advs.202001739
FATEIXA S , NOGUEIRA H I S , TRINDADE T . SERS research applied to polymer based nanocomposites [M]. Raman Spectroscopy : InTech , 2018 .
常颖 , 赵阳 , 高利生 . 微流控芯片–表面增强拉曼光谱法快速测定污水中氯胺酮 [J]. 化学分析计量 , 2020 , 29 ( 6 ): 33 - 37 . doi: 10.3969/j.issn.1008-6145.2020.06.008 http://dx.doi.org/10.3969/j.issn.1008-6145.2020.06.008
CHANG Y , ZHAO Y , GAO L S . Rapid determination of ketamine in sewage by microfluidic chip–surface enhanced Raman spectroscopy [J]. Chemical Analysis and Meterage , 2020 , 29 ( 6 ): 33 - 37 . (in Chinese) . doi: 10.3969/j.issn.1008-6145.2020.06.008 http://dx.doi.org/10.3969/j.issn.1008-6145.2020.06.008
王利华 , 王佳慧 , 韩艳云 , 等 . Au@Ag纳米粒子表面增强拉曼光谱法高灵敏检测孔雀石绿 [J]. 武汉工程大学学报 , 2018 , 40 ( 1 ): 40 - 45 . doi: 10.3969/j.issn.1674-2869.2018.01.007 http://dx.doi.org/10.3969/j.issn.1674-2869.2018.01.007
WANG L H , WANG J H , HAN Y Y , et al . Highly sensitive detection of malachite green by surface-enhanced Raman scattering method using Au@Ag nanoparticles [J]. Journal of Wuhan Institute of Technology , 2018 , 40 ( 1 ): 40 - 45 . (in Chinese) . doi: 10.3969/j.issn.1674-2869.2018.01.007 http://dx.doi.org/10.3969/j.issn.1674-2869.2018.01.007
TANG J Q , ZHANG Q H , ZENG C Y , et al . Preparation of large-area surface-enhanced Raman scattering active Ag and Ag/Au nanocomposite films [J]. Applied Physics A , 2013 , 111 ( 4 ): 1099 - 1105 . doi: 10.1007/s00339-013-7568-8 http://dx.doi.org/10.1007/s00339-013-7568-8
BAO Z Y , LEI D Y , JIANG R B , et al . Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy [J]. Nanoscale , 2014 , 6 ( 15 ): 9063 - 9070 . doi: 10.1039/c4nr00770k http://dx.doi.org/10.1039/c4nr00770k
PANG Y F , WAN N , SHI L L , et al . Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe 3 O 4 @Au [J]. Analytica Chimica Acta , 2019 , 1077 : 288 - 296 . doi: 10.1016/j.aca.2019.05.059 http://dx.doi.org/10.1016/j.aca.2019.05.059
DING Q Q , LIU H L , YANG L B , et al . Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates [J]. Journal of Materials Chemistry , 2012 , 22 ( 37 ): 19932 . doi: 10.1039/c2jm33200k http://dx.doi.org/10.1039/c2jm33200k
DING Q , MA Y , YE Y , et al . A simple method to prepare the magnetic Ni@Au core‐shell nanostructure for the cycle surface enhanced Raman scattering substrates [J]. Journal of Raman Spectroscopy , 2013 , 44 ( 7 ): 987 - 993 . doi: 10.1002/jrs.4303 http://dx.doi.org/10.1002/jrs.4303
ALESSANDRI I . Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO 2 shell-based resonators [J]. Journal of the American Chemical Society , 2013 , 135 ( 15 ): 5541 - 5544 . doi: 10.1021/ja401666p http://dx.doi.org/10.1021/ja401666p
HUANG J , CHEN F , ZHANG Q , et al . 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates [J]. ACS Applied Materials & Interfaces , 2015 , 7 ( 10 ): 5725 - 5735 . doi: 10.1021/am507857x http://dx.doi.org/10.1021/am507857x
XU H , HUANG J , CHEN Y . Synthesis and characterization of porous CuO nanorods [J]. Integrated Ferroelectrics , 2011 , 129 ( 1 ): 25 - 29 . doi: 10.1080/10584587.2011.576895 http://dx.doi.org/10.1080/10584587.2011.576895
LIU P , CHEN H J , WANG H , et al . Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection [J]. The Journal of Physical Chemistry C , 2015 , 119 ( 2 ): 1234 - 1246 . doi: 10.1021/jp5111482 http://dx.doi.org/10.1021/jp5111482
张晓蕾 , 张洁 , 朱永 . CNTs/AgNPs复合结构的微流控表面增强拉曼散射实验 [J]. 中国激光 , 2019 , 46 ( 10 ): 1011001 . doi: 10.3788/cjl201946.1011001 http://dx.doi.org/10.3788/cjl201946.1011001
ZHANG X L , ZHANG J , ZHU Y . Microfluidic surface-enhanced Raman scattering experiment using CNTs/AgNPs composite structure [J]. Chinese Journal of Lasers , 2019 , 46 ( 10 ): 1011001 . (in Chinese) . doi: 10.3788/cjl201946.1011001 http://dx.doi.org/10.3788/cjl201946.1011001
LEE S , CHOI J , CHEN L X , et al . Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor [J]. Analytica Chimica Acta , 2007 , 590 ( 2 ): 139 - 144 . doi: 10.1016/j.aca.2007.03.049 http://dx.doi.org/10.1016/j.aca.2007.03.049
YEA K H , LEE S , KYONG J B , et al . Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy [J]. The Analyst , 2005 , 130 ( 7 ): 1009 - 1011 . doi: 10.1039/b501980j http://dx.doi.org/10.1039/b501980j
LEE C Y , CHANG C L , WANG Y N , et al . Microfluidic mixing: a review [J]. International Journal of Molecular Sciences , 2011 , 12 ( 5 ): 3263 - 3287 . doi: 10.3390/ijms12053263 http://dx.doi.org/10.3390/ijms12053263
HIDI I J , JAHN M , WEBER K , et al . Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples [J]. Analytical Chemistry , 2016 , 88 ( 18 ): 9173 - 9180 . doi: 10.1021/acs.analchem.6b02316 http://dx.doi.org/10.1021/acs.analchem.6b02316
GAO R K , CHENG Z Y , DEMELLO A J , et al . Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics [J]. Lab on a Chip , 2016 , 16 ( 6 ): 1022 - 1029 . doi: 10.1039/c5lc01249j http://dx.doi.org/10.1039/c5lc01249j
PU H B , XIAO W , SUN D W . SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants [J]. Trends in Food Science & Technology , 2017 , 70 : 114 - 126 . doi: 10.1016/j.tifs.2017.10.001 http://dx.doi.org/10.1016/j.tifs.2017.10.001
WANG R , XU Y , WANG C Y , et al . Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate [J]. Applied Surface Science , 2015 , 349 : 805 - 810 . doi: 10.1016/j.apsusc.2015.05.067 http://dx.doi.org/10.1016/j.apsusc.2015.05.067
WANG R , XU Y , WANG R J , et al . A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine [J]. Microchimica Acta , 2017 , 184 ( 1 ): 279 - 287 . doi: 10.1007/s00604-016-1990-5 http://dx.doi.org/10.1007/s00604-016-1990-5
陈李 , 李丹阳 , 杨峰 , 等 . 阵列式柔性纸基SERS细菌检测芯片的制备 [J]. 光学 精密工程 , 2020 , 28 ( 1 ): 110 - 118 . doi: 10.3788/ope.20202801.0110 http://dx.doi.org/10.3788/ope.20202801.0110
CHEN L , LI D Y , YANG F , et al . Fabrication of array flexible paper-based SERS microarray for bacterial detection [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 110 - 118 . (in Chinese) . doi: 10.3788/ope.20202801.0110 http://dx.doi.org/10.3788/ope.20202801.0110
CHEN G , WANG Y Y , WANG H L , et al . A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays [J]. RSC Adv , 2014 , 4 ( 97 ): 54434 - 54440 . doi: 10.1039/c4ra09251a http://dx.doi.org/10.1039/c4ra09251a
VIEHRIG M , RAJENDRAN S T , SANGER K , et al . Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk [J]. Analytical Chemistry , 2020 , 92 ( 6 ): 4317 - 4325 . doi: 10.1021/acs.analchem.9b05060 http://dx.doi.org/10.1021/acs.analchem.9b05060
ZHAO Y Q , ZHANG Y L , HUANG J A , et al . Plasmonic nanopillar array embedded microfluidic chips: an in situ SERS monitoring platform [J]. Journal of Materials Chemistry A , 2015 , 3 ( 12 ): 6408 - 6413 . doi: 10.1039/c4ta07076c http://dx.doi.org/10.1039/c4ta07076c
GALARRETA B C , TABATABAEI M , GUIEU V , et al . Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A [J]. Analytical and Bioanalytical Chemistry , 2013 , 405 ( 5 ): 1613 - 1621 . doi: 10.1007/s00216-012-6557-7 http://dx.doi.org/10.1007/s00216-012-6557-7
WANG C Y , MU X Q , HUO J , et al . Highly-efficient SERS detection for E. coli using a microfluidic chip with integrated NaYF 4 : Yb, Er@SiO 2 @Au under near-infrared laser excitation [J]. Microsystem Technologies , 2021 , 27 ( 9 ): 3285 - 3291 . doi: 10.1007/s00542-020-05087-y http://dx.doi.org/10.1007/s00542-020-05087-y
SEVIM S , FRANCO C , CHEN X Z , et al . SERS barcode libraries: a microfluidic approach [J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) , 2020 , 7 ( 12 ): 1903172 . doi: 10.1002/advs.201903172 http://dx.doi.org/10.1002/advs.201903172
WANG C Y , XU Y , ZHAO H Z , et al . Detection and analysis of SERS effect of nano gold by self-assembly chemical plating composite method [J]. Applied Surface Science , 2015 , 353 : 750 - 756 . doi: 10.1016/j.apsusc.2015.05.083 http://dx.doi.org/10.1016/j.apsusc.2015.05.083
WANG C Y , XU Y , DENG C H , et al . Design and preparation of a recyclable microfluidic SERS chip with integrated Au@Ag/TiO 2 NTs [J]. RSC Advances , 2016 , 6 ( 114 ): 113115 - 113122 . doi: 10.1039/c6ra14947b http://dx.doi.org/10.1039/c6ra14947b
ZHAO H Z , XU Y , WANG C Y , et al . Design and fabrication of a microfluidic SERS chip with integrated Ag film@nanoAu [J]. RSC Advances , 2016 , 6 ( 17 ): 14105 - 14111 . doi: 10.1039/c5ra25018h http://dx.doi.org/10.1039/c5ra25018h
PARISI J , SU L , LEI Y . In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing [J]. Lab on a Chip , 2013 , 13 ( 8 ): 1501 - 1508 . doi: 10.1039/c3lc41249k http://dx.doi.org/10.1039/c3lc41249k
WANG L , ZHOU G , GUAN X L , et al . Rapid preparation of surface-enhanced Raman substrate in microfluidic channel for trace detection of amoxicillin [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 2020 , 235 : 118262 . doi: 10.1016/j.saa.2020.118262 http://dx.doi.org/10.1016/j.saa.2020.118262
LAWANSTIEND D , GATEMALA H , NOOTCHANAT S , et al . Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates [J]. Sensors and Actuators B: Chemical , 2018 , 270 : 466 - 474 . doi: 10.1016/j.snb.2018.05.051 http://dx.doi.org/10.1016/j.snb.2018.05.051
XU B B , MA Z C , WANG L , et al . Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels [J]. Lab on a Chip , 2011 , 11 ( 19 ): 3347 - 3351 . doi: 10.1039/c1lc20397e http://dx.doi.org/10.1039/c1lc20397e
XU B B , ZHANG R , LIU X Q , et al . On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring [J]. Chemical Communications (Cambridge, England) , 2012 , 48 ( 11 ): 1680 - 1682 . doi: 10.1039/c2cc16612g http://dx.doi.org/10.1039/c2cc16612g
XIE Y L , YANG S K , MAO Z M , et al . In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems [J]. ACS Nano , 2014 , 8 ( 12 ): 12175 - 12184 . doi: 10.1021/nn503826r http://dx.doi.org/10.1021/nn503826r
WANG P X , SUN Y , LI X , et al . Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: a review [J]. Analytica Chimica Acta , 2021 , 1157 : 338279 . doi: 10.1016/j.aca.2021.338279 http://dx.doi.org/10.1016/j.aca.2021.338279
SUN J , GONG L , WANG W J , et al . Surface-enhanced Raman spectroscopy for on-site analysis: a review of recent developments [J]. Luminescence: the Journal of Biological and Chemical Luminescence , 2020 , 35 ( 6 ): 808 - 820 . doi: 10.1002/bio.3796 http://dx.doi.org/10.1002/bio.3796
LIU B X , WU T , YANG X H , et al . Portable microfluidic chip based surface-enhanced Raman spectroscopy sensor for crystal violet [J]. Analytical Letters , 2014 , 47 ( 16 ): 2682 - 2690 . doi: 10.1080/00032719.2014.917425 http://dx.doi.org/10.1080/00032719.2014.917425
DINA N E , GHERMAN A M R , COLNITĂ A , et al . Fuzzy characterization and classification of bacteria species detected at single-cell level by surface-enhanced Raman scattering [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 2021 , 247 : 119149 . doi: 10.1016/j.saa.2020.119149 http://dx.doi.org/10.1016/j.saa.2020.119149
刘燕德 , 靳昙昙 , 王海阳 . 基于拉曼光谱的三组分食用调和油快速定量检测 [J]. 光学 精密工程 , 2015 , 23 ( 9 ): 2490 - 2496 . doi: 10.3788/ope.20152309.2490 http://dx.doi.org/10.3788/ope.20152309.2490
LIU Y D , JIN T T , WANG H Y . Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy [J]. Opt. Precision Eng. , 2015 , 23 ( 9 ): 2490 - 2496 . (in Chinese) . doi: 10.3788/ope.20152309.2490 http://dx.doi.org/10.3788/ope.20152309.2490
MUNGROO N A , OLIVEIRA G , NEETHIRAJAN S . SERS based point-of-care detection of food-borne pathogens [J]. Microchimica Acta , 2016 , 183 ( 2 ): 697 - 707 . doi: 10.1007/s00604-015-1698-y http://dx.doi.org/10.1007/s00604-015-1698-y
MÜHLIG A , BOCKLITZ T , LABUGGER I , et al . LOC-SERS: a promising closed system for the identification of mycobacteria [J]. Analytical Chemistry , 2016 , 88 ( 16 ): 7998 - 8004 . doi: 10.1021/acs.analchem.6b01152 http://dx.doi.org/10.1021/acs.analchem.6b01152
ZHANG J Y , DO J , PREMASIRI W R , et al . Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect [J]. Lab on a Chip , 2010 , 10 ( 23 ): 3265 - 3270 . doi: 10.1039/c0lc00051e http://dx.doi.org/10.1039/c0lc00051e
LEE J H , LEE S K , KIM J H , et al . Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel [J]. Sensors and Actuators A: Physical , 2019 , 286 : 211 - 219 . doi: 10.1016/j.sna.2018.12.047 http://dx.doi.org/10.1016/j.sna.2018.12.047
PITT W G , ALIZADEH M , HUSSEINI G A , et al . Rapid separation of bacteria from blood-review and outlook [J]. Biotechnology Progress , 2016 , 32 ( 4 ): 823 - 839 . doi: 10.1002/btpr.2299 http://dx.doi.org/10.1002/btpr.2299
LIN H Y , HUANG C H , HSIEH W H , et al . On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device [J]. Small (Weinheim an Der Bergstrasse, Germany) , 2014 , 10 ( 22 ): 4700 - 4710 . doi: 10.1002/smll.201401526 http://dx.doi.org/10.1002/smll.201401526
KWON K , GWAK H , HYUN K A , et al . High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria [J]. Sensors and Actuators B: Chemical , 2019 , 294 : 62 - 68 . doi: 10.1016/j.snb.2019.05.007 http://dx.doi.org/10.1016/j.snb.2019.05.007
KRAFFT B , TYCOVA A , URBAN R D , et al . Microfluidic device for concentration and SERS-based detection of bacteria in drinking water [J]. Electrophoresis , 2021 , 42 ( 1/2 ): 86 - 94 . doi: 10.1002/elps.202000048 http://dx.doi.org/10.1002/elps.202000048
CHANG K W , CHENG H W , SHIUE J , et al . Antibiotic susceptibility test with surface-enhanced Raman scattering in a microfluidic system [J]. Analytical Chemistry , 2019 , 91 ( 17 ): 10988 - 10995 . doi: 10.1021/acs.analchem.9b01027 http://dx.doi.org/10.1021/acs.analchem.9b01027
CHENG I F , LIN C C , LIN D Y , et al . A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria [J]. Biomicrofluidics , 2010 , 4 ( 3 ): 034104 . doi: 10.1063/1.3474638 http://dx.doi.org/10.1063/1.3474638
SU X , REN R , WU Y , et al . Study of biochip integrated with microelectrodes modified by poly-dopamine-co-chitosan composite gel for separation, enrichment and detection of microbes in the aerosol [J]. Biosensors and Bioelectronics , 2021 , 176 : 112931 . doi: 10.1016/j.bios.2020.112931 http://dx.doi.org/10.1016/j.bios.2020.112931
CHENG I F , CHEN T Y , LU R J , et al . Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy [J]. Nanoscale Research Letters , 2014 , 9 ( 1 ): 324 . doi: 10.1186/1556-276x-9-324 http://dx.doi.org/10.1186/1556-276x-9-324
CHENG I F , CHANG H C , CHEN T Y , et al . Rapid (5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy [J]. Scientific Reports , 2013 , 3 : 2365 . doi: 10.1038/srep02365 http://dx.doi.org/10.1038/srep02365
WITKOWSKA E , ŁASICA A M , NICIŃSKI K , et al . In search of spectroscopic signatures of periodontitis: a SERS-based magnetomicrofluidic sensor for detection of porphyromonas gingivalis and aggregatibacter actinomycetemcomitans [J]. ACS Sensors , 2021 , 6 ( 4 ): 1621 - 1635 . doi: 10.1021/acssensors.1c00166 http://dx.doi.org/10.1021/acssensors.1c00166
WANG C , MADIYAR F , YU C X , et al . Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor [J]. Journal of Biological Engineering , 2017 , 11 : 9 . doi: 10.1186/s13036-017-0051-x http://dx.doi.org/10.1186/s13036-017-0051-x
MADIYAR F R , BHANA S , SWISHER L Z , et al . Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection [J]. Nanoscale , 2015 , 7 ( 8 ): 3726 - 3736 . doi: 10.1039/c4nr07183b http://dx.doi.org/10.1039/c4nr07183b
SHI L L , XU L , XIAO R , et al . Rapid, quantitative, high-sensitive detection of escherichia coli O157: H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay [J]. Frontiers in Microbiology , 2020 , 11 : 596005 . doi: 10.3389/fmicb.2020.596005 http://dx.doi.org/10.3389/fmicb.2020.596005
CATALA C , MIR-SIMON B , FENG X T , et al . Online SERS quantification of Staphylococcus aureus and the application to diagnostics in human fluids [J]. Advanced Materials Technologies , 2016 , 1 ( 8 ): 1600163 . doi: 10.1002/admt.201600163 http://dx.doi.org/10.1002/admt.201600163
JARVIS R M , LAW N , SHADI I T , et al . Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations [J]. Analytical Chemistry , 2008 , 80 ( 17 ): 6741 - 6746 . doi: 10.1021/ac800838v http://dx.doi.org/10.1021/ac800838v
0
Views
458
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution