浏览全部资源
扫码关注微信
1.重庆大学 机械与运载工程学院,重庆 400044
2.中国工程物理研究院 总体工程研究所,四川 绵阳 621999
E-mail: ling_mx@163.com,gbtao@cqu.edu.cn
Received:07 April 2022,
Revised:10 May 2022,
Published:25 July 2022
移动端阅览
黄涛,罗治洪,陶桂宝等.压电定位平台Hammerstein建模与反馈线性化控制[J].光学精密工程,2022,30(14):1716-1724.
HUANG Tao,LUO Zhihong,TAO Guibao,et al.Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J].Optics and Precision Engineering,2022,30(14):1716-1724.
黄涛,罗治洪,陶桂宝等.压电定位平台Hammerstein建模与反馈线性化控制[J].光学精密工程,2022,30(14):1716-1724. DOI: 10.37188/OPE.20223014.1716.
HUANG Tao,LUO Zhihong,TAO Guibao,et al.Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J].Optics and Precision Engineering,2022,30(14):1716-1724. DOI: 10.37188/OPE.20223014.1716.
压电定位平台以压电陶瓷、柔性铰链作为驱动及放大机构,具有高定位精度和快响应速度,被广泛应用于各种精密/超精密定位领域。压电定位平台面临的主要挑战是压电陶瓷的固有迟滞非线性特性,这严重影响平台的定位和跟踪精度。针对此问题,提出一种基于Hammerstein结构的迟滞建模方法及基于此模型的输入-输出反馈线性化控制策略。首先,建立Hammerstein结构的迟滞模型,并进行模型参数估计。接着,以基于Hammerstein模型的输入-输出反馈线性化控制策略设计跟踪控制器。最后,在压电定位平台上对建立的模型和设计的跟踪控制器进行实验验证。模型辨识实验结果表明:提出的Hammerstein模型能有效地拟合压电定位平台输入量与输出量之间的迟滞非线性特性,其均方根误差小于0.5 μm。轨迹跟踪实验结果表明:设计的跟踪控制器对期望信号(幅值60 μm,频率100 Hz)的跟踪均方根误差为0.926 6 μm,相较于基于改进的速率相关PI(Modified Rate-dependent Prandtl-Ishlinskii, MRPI)模型的前馈补偿跟踪控制、基于MRPI模型的前馈补偿与PID反馈复合跟踪控制,精度分别提高81.22%、46.25%。
A piezoelectric positioning stage is driven and amplified by piezoelectric ceramic and flexible hinges, which can provide high positioning accuracies and response speeds. Thus, it is widely used in various precision/ultra-precision positioning fields. However, the primary challenge presented by the piezoelectric positioning stage is the inherent hysteresis nonlinear characteristics of piezoelectric ceramics, which significantly affects the positioning and tracking accuracy of the piezoelectric positioning stage. Hence, a hysteresis modeling method based on the Hammerstein structure and an input-output feedback linearization control strategy is proposed herein. First, hysteresis modeling based on the Hammerstein structure is proposed, and the parameters are estimated. Subsequently, based on the Hammerstein model, a tracking controller is designed via an input–output feedback linearization control strategy. Finally, the proposed Hammerstein model and the designed tracking controller are experimentally verified on a piezoelectric positioning stage. The experimental results of model identification reveal that the proposed Hammerstein model can effectively fit the hysteresis nonlinearity between the input and output of the piezoelectric positioning stage and that its root mean square error is less than 0.5 μm. Meanwhile, the experimental results of trajectory tracking indicate that the designed tracking controller can track the desired signal (amplitude 60 μm; frequency 100 Hz) with a root mean square error of 0.926 6 μm. Compared with the feedforward compensation tracking control based on the modified rate-dependent Prandtl-Ishlinskii (MRPI) model and the compound tracking control of feedforward compensation based on the MRPI model and proportional-integral-derivative feedback, the proposed model offers an accuracy improvement of 81.22% and 46.25%, respectively.
LIU R , WANG L , JIN J M , et al . A novel 3-DoF piezoelectric robotic pectoral fin: design, simulation, and experimental investigation [J]. Smart Materials and Structures , 2022 , 31 ( 6 ): 065003 . doi: 10.1088/1361-665x/ac663f http://dx.doi.org/10.1088/1361-665x/ac663f
范伟 , 傅雨晨 , 于欣妍 . 压电陶瓷驱动器的迟滞非线性规律 [J]. 光学 精密工程 , 2019 , 27 ( 8 ): 1793 - 1799 . doi: 10.3788/ope.20192708.1793 http://dx.doi.org/10.3788/ope.20192708.1793
FAN W , FU Y C , YU X Y . Hysteresis nonlinear law of piezoelectric ceramic actuator [J]. Opt. Precision Eng. , 2019 , 27 ( 8 ): 1793 - 1799 . (in Chinese) . doi: 10.3788/ope.20192708.1793 http://dx.doi.org/10.3788/ope.20192708.1793
GU G Y , ZHU L M , SU C Y , et al . Modeling and control of piezo-actuated nanopositioning stages: a survey [J]. IEEE Transactions on Automation Science and Engineering , 2016 , 13 ( 1 ): 313 - 332 . doi: 10.1109/tase.2014.2352364 http://dx.doi.org/10.1109/tase.2014.2352364
AHMED K , YAN P , LI S . Duhem model-based hysteresis identification in piezo-actuated nano-stage using modified particle swarm optimization [J]. Micromachines , 2021 , 12 ( 3 ): 315 . doi: 10.3390/mi12030315 http://dx.doi.org/10.3390/mi12030315
AHMAD I , ALI M A , KO W . Robust μ-synthesis with dahl model based feedforward compensator design for piezo-actuated micropositioning stage [J]. IEEE Access , 8 : 141799 - 141813 .
王贞艳 , 贾高欣 . 压电陶瓷作动器非对称迟滞建模与内模控制 [J]. 光学 精密工程 , 2018 , 26 ( 10 ): 2484 - 2492 . doi: 10.3788/ope.20182610.2484 http://dx.doi.org/10.3788/ope.20182610.2484
WANG Z Y , JIA G X . Asymmetric hysteresis modeling and internal model control of piezoceramic actuators [J]. Opt. Precision Eng. , 2018 , 26 ( 10 ): 2484 - 2492 . (in Chinese) . doi: 10.3788/ope.20182610.2484 http://dx.doi.org/10.3788/ope.20182610.2484
NGUYEN P B , CHOI S B , SONG B K . A new approach to hysteresis modelling for a piezoelectric actuator using Preisach model and recursive method with an application to open-loop position tracking control [J]. Sensors and Actuators A: Physical , 2018 , 270 : 136 - 152 . doi: 10.1016/j.sna.2017.12.034 http://dx.doi.org/10.1016/j.sna.2017.12.034
JANAIDEH M , RAKOTONDRABE M . Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities [J]. Nonlinear Dynamics , 2021 , 104 ( 4 ): 3385 - 3405 .
徐金秋 , 娄军强 , 杨依领 , 等 . 压电宏纤维致动器的双极性非对称迟滞建模及补偿控制 [J]. 振动工程学报 , 2021 , 34 ( 1 ): 159 - 165 . doi: 10.16385/j.cnki.issn.1004-4523.2021.01.018 http://dx.doi.org/10.16385/j.cnki.issn.1004-4523.2021.01.018
XU J Q , LOU J Q , YANG Y L , et al . Modeling and feedforward comprehension control on the bipolar asymmetric hysteresis of marco fiber composite(MFC)actuators [J]. Journal of Vibration Engineering , 2021 , 34 ( 1 ): 159 - 165 . (in Chinese) . doi: 10.16385/j.cnki.issn.1004-4523.2021.01.018 http://dx.doi.org/10.16385/j.cnki.issn.1004-4523.2021.01.018
XU R , TIAN D P , WANG Z S . Adaptive tracking control for the piezoelectric actuated stage using the krasnosel'skii-pokrovskii operator [J]. Micromachines , 2020 , 11 ( 5 ): 537 . doi: 10.3390/mi11050537 http://dx.doi.org/10.3390/mi11050537
LING J , FENG Z , ZHENG D D , et al . Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control [J]. Mechanical Systems and Signal Processing , 2021 , 150 : 107235 . doi: 10.1016/j.ymssp.2020.107235 http://dx.doi.org/10.1016/j.ymssp.2020.107235
ZHAO X L , XIE H , PAN H P . Modeling rate-dependent hysteresis in piezoelectric actuators using T-S fuzzy system based on expanded input space method [J]. Sensors and Actuators A: Physical , 2018 , 283 : 123 - 127 . doi: 10.1016/j.sna.2018.09.050 http://dx.doi.org/10.1016/j.sna.2018.09.050
LIU Y F , SHE J Y , DUAN H Y , et al . Hybrid model based on maxwell-slip model and relevance vector machine [J]. IEEE Transactions on Industrial Electronics , 2021 , 68 ( 10 ): 10050 - 10057 . doi: 10.1109/tie.2020.3029471 http://dx.doi.org/10.1109/tie.2020.3029471
李致富 , 黄楠 , 钟云 , 等 . 压电驱动器迟滞非线性的分数阶建模及实验验证 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1124 - 1131 .
LI Z F , HUANG N , ZHONG Y , et al . Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1124 - 1131 . (in Chinese)
YANG M J , LI C X , GU G Y , et al . A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator [J]. Frontiers of Mechanical Engineering , 2015 , 10 ( 1 ): 37 - 42 . doi: 10.1007/s11465-015-0326-1 http://dx.doi.org/10.1007/s11465-015-0326-1
WEN Z J , DING Y , LIU P K , et al . An efficient identification method for dynamic systems with coupled hysteresis and linear dynamics: application to piezoelectric-actuated nanopositioning stages [J]. IEEE/ASME Transactions on Mechatronics , 2019 , 24 ( 1 ): 326 - 337 . doi: 10.1109/tmech.2019.2891777 http://dx.doi.org/10.1109/tmech.2019.2891777
ZHAO Y H , MENG G , ZHANG W M . Characterization and modeling of viscoelastic hysteresis in a dielectric elastomer actuator [J]. Smart Materials and Structures , 2020 , 29 ( 5 ): 055019 . doi: 10.1088/1361-665x/ab7e36 http://dx.doi.org/10.1088/1361-665x/ab7e36
CHEN X K , SU C Y , LI Z , et al . Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator [J]. IEEE Transactions on Industrial Electronics , 2016 , 63 ( 10 ): 6471 - 6481 . doi: 10.1109/tie.2016.2573270 http://dx.doi.org/10.1109/tie.2016.2573270
SHAN X B , SONG H N , CAO H , et al . A dynamic hysteresis model and nonlinear control system for a structure-integrated piezoelectric sensor-actuator [J]. Sensors , 2021 , 21 ( 1 ): 269 . doi: 10.3390/s21010269 http://dx.doi.org/10.3390/s21010269
FAN Y F , TAN U X . Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking [J]. IEEE/ASME Transactions on Mechatronics , 2019 , 24 ( 2 ): 853 - 862 . doi: 10.1109/tmech.2019.2899069 http://dx.doi.org/10.1109/tmech.2019.2899069
郑述峰 , 朱玉川 , 凌杰 , 等 . 轴向双压电叠堆执行器并联控制实验研究 [J]. 北京航空航天大学学报 , 2021 : 1 - 11 .
ZHENG S F , ZHU Y C , LING J , et al . Experimental study on parallel control of an axial dual-piezoelectric stack actuator [J]. Journal of Beijing University of Aeronautics and Astronautics , 2021 : 1 - 11 . (in Chinese)
0
Views
1000
下载量
9
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution