Currently, pedestrian detection in multiple scenes is a research hotspot in the field of computer vision. Deep learning has attracted considerable attention and can provide high detection accuracy; however, the subsequent high-complexity operations seriously limit its application on mobile platforms. To address this problem, this paper proposes a lightweight pedestrian detection algorithm for multiple scenes. Firstly, a deep and shallow feature fusion network is constructed to learn the texture features of multi-scale pedestrians. Secondly, a cross-dimensional feature-guided attention module is designed to retain the interactive information between channels and spaces in the process of feature extraction. Finally, the redundant channels in the model are trimmed using the pruning strategy, to reduce the algorithm complexity. In addition, an adaptive Gamma correction algorithm is designed to reduce the influence of external disturbances, such as illumination and shadows, on the detection results of multiple scenes. The experimental results show that the proposed method can compress the model volume to 10 MB, and the processing speed can reach 93 Frame/s while achieving similar detection accuracy, which outperforms the current mainstream methods.
关键词
Keywords
references
YADAV R P , SENTHAMILARASU V , KUTTY K , et al . Implementation of robust HOG-SVM based pedestrian classification [J]. International Journal of Computer Applications , 2015 , 114 ( 19 ): 10 - 16 . doi: 10.5120/20084-2026 http://dx.doi.org/10.5120/20084-2026
SABZMEYDANI P , MORI G . Detecting pedestrians by learning shapelet features [C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition . 1722,2007 , Minneapolis , MN , USA . IEEE , 2007 : 1 - 8 . doi: 10.1109/cvpr.2007.383134 http://dx.doi.org/10.1109/cvpr.2007.383134
CAO J , PANG Y , XIE J , et al . From handcrafted to deep features for pedestrian detection: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 . doi: 10.1109/tpami.2021.3076733 http://dx.doi.org/10.1109/tpami.2021.3076733
CAI Z , FAN Q , FERIS R S , et al . A unified multi-scale deep convolutional neural network for fast object detection [C]. European conference on computer Vision. Springer , Cham , 2016 : 354 - 370 . doi: 10.1007/978-3-319-46493-0_22 http://dx.doi.org/10.1007/978-3-319-46493-0_22
YANG P Y , ZHANG G F , WANG L , et al . A part-aware multi-scale fully convolutional network for pedestrian detection [J]. IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 2 ): 1125 - 1137 . doi: 10.1109/tits.2019.2963700 http://dx.doi.org/10.1109/tits.2019.2963700
ZOU Z Y , GAI S Y , DA F P , et al . Occluded pedestrian detection algorithm based on attention mechanism [J]. Acta Optica Sinica , 2021 , 41 ( 15 ): 1515001 . (in Chinese) . doi: 10.3788/aos202141.1515001 http://dx.doi.org/10.3788/aos202141.1515001
WU J L , ZHOU C L , YANG M , et al . Temporal-context enhanced detection of heavily occluded pedestrians [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 13427 - 13436 . doi: 10.1109/cvpr42600.2020.01344 http://dx.doi.org/10.1109/cvpr42600.2020.01344
SHI X H , WU J Q , WU C G , et al . Residual network based curve enhanced lane detection method [J/OL]. Journal of Jilin University(Engineering and Technology Edition) : 1 - 9 . [ 2022-04-02 ]. DOI: 10.13229/j.cnki.jdxbgxb20210618. http://dx.doi.org/10.13229/j.cnki.jdxbgxb20210618. (in Chinese)
GE Z , LIU S , WANG F , et al . Yolox: Exceeding yolo series in 2021 [J]. arXiv preprint arXiv : 2017 ,08430, 2021 .
HOU Q B , ZHOU D Q , FENG J S . Coordinate attention for efficient mobile network design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2025,2021 , Nashville, TN, USA. IEEE , 2021 : 13708 - 13717 . doi: 10.1109/cvpr46437.2021.01350 http://dx.doi.org/10.1109/cvpr46437.2021.01350
LIU Z , LI J G , SHEN Z Q , et al . Learning efficient convolutional networks through network slimming [C]. 2017 IEEE International Conference on Computer Vision . 2229,2017 , Venice, Italy . IEEE , 2017 : 2755 - 2763 . doi: 10.1109/iccv.2017.298 http://dx.doi.org/10.1109/iccv.2017.298
REN B , WANG Y Q , CONG Z , et al . Design of aerial image target detection system based on MPSOC [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 7 ): 1006 - 1017 . (in Chinese) . doi: 10.37188/CJLCD.2020-0310 http://dx.doi.org/10.37188/CJLCD.2020-0310
ZHOU J M , WANG Y , NING H , et al . Lane detection algorithm based on GLNet for multiple scenes [J]. China Journal of Highway and Transport , 2021 , 34 ( 7 ): 118 - 127 . (in Chinese) . doi: 10.3969/j.issn.1001-7372.2021.07.010 http://dx.doi.org/10.3969/j.issn.1001-7372.2021.07.010
BABAKHANI P , ZAREI P . Automatic gamma correction based on average of brightness [J]. Advances in Computer Science: an International Journal , 2015 , 4 ( 6 ): 156 - 159 .
WANG S G , CHENG J , LIU H J , et al . PCN: part and context information for pedestrian detection with CNNs [J]. arXiv preprint arXiv : 1804.04483 , 2018 . doi: 10.5244/c.31.34 http://dx.doi.org/10.5244/c.31.34