浏览全部资源
扫码关注微信
1.湖南大学 机械与运载工程学院 国家高效磨削工程技术中心,湖南 长沙 410082
2.湖南大学 深圳研究院 微纳光学器件先进制造实验室,广东 深圳 518000
3.湖南大学 粤港澳大湾区创新研究院,广东 广州 511300
Received:08 April 2022,
Revised:29 April 2022,
Published:10 August 2022
移动端阅览
池汉彬,段辉高,胡跃强.超构表面在三维成像与显示技术中的应用[J].光学精密工程,2022,30(15):1775-1801.
CHI Hanbin,DUAN Huigao,HU Yueqiang.Application of metasurfaces in three-dimensonal imaging and display[J].Optics and Precision Engineering,2022,30(15):1775-1801.
池汉彬,段辉高,胡跃强.超构表面在三维成像与显示技术中的应用[J].光学精密工程,2022,30(15):1775-1801. DOI: 10.37188/OPE.20223015.1775.
CHI Hanbin,DUAN Huigao,HU Yueqiang.Application of metasurfaces in three-dimensonal imaging and display[J].Optics and Precision Engineering,2022,30(15):1775-1801. DOI: 10.37188/OPE.20223015.1775.
三维成像与显示技术能获取并保存物体的空间三维信息并呈现出立体逼真的画面,在消费电子、自动驾驶、机器人视觉以及增强现实及虚拟现实等领域有广阔的应用前景。现有的三维成像与显示设备受到传统光学元件性能缺陷的限制,难以同时满足宽视场、大数值孔径、高分辨率、连续视差和小型化等性能要求。超构表面作为亚波长结构单元排布组成的新型平面光学元件,能对光场进行灵活调控,具有多功能、易集成、轻薄化和紧凑化的优势,有望突破传统光学元件的瓶颈,为实现多功能紧凑型的三维成像与显示设备提供可能。本文综述了超构表面在三维成像与显示技术中的研究进展,详细介绍了超构表面在主动式和被动式的三维成像技术,以及全息显示、光场显示和近眼显示的三维显示技术中的应用和表现,最后总结和展望了超构表面在三维成像与显示领域的挑战和未来发展方向。
Three-dimensional (3D) imaging and display technology can obtain and save the three-dimensional information of objects and present stereoscopic realistic pictures. It has broad application prospects in consumer electronics, autonomous driving, robot vision, and augmented reality/virtual reality (AR/VR). The existing three-dimensional imaging and display devices are limited by the performance defects of traditional optical elements, and it is difficult to simultaneously meet the performance requirements of wide field of view, large numerical aperture, high resolution, continuous parallax and miniaturization, etc. As a new type of planar optical element composed of subwavelength structural unit, metasurfaces can flexibly control the light field, and have the advantage of easy integration, thinness, and compactness. It is expected to break through the bottleneck of traditional optical elements and provide the possibility for realizing multi-functional compact three-dimensional imaging and display equipment. Herein, we review the research progress of metasurfaces in three-dimensional imaging and display technology. The application and performance of metasurfaces in active and passive three-dimensional imaging technologies and three-dimensional display technologies such as holographic display, light field display, and near-eye display are discussed in detail. Finally, the challenges and future development directions of metasurfaces in the field of three-dimensional imaging and display are summarized and prospected.
UDUPA J K H G T , UDUPA J K , HERMAN G T . 3 D Imaging in Medicine [M]. Boca Raton : CRC Press , 1999 .
HOLLIMAN N . 3D display systems [J]. To Appear , 2005 : 7503 .
GENG J . Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics , 2011 , 3 ( 2 ): 128 - 160 . doi: 10.1364/aop.3.000128 http://dx.doi.org/10.1364/aop.3.000128
REMONDINO F , STOPPA D . T OF Range-Imaging Cameras : [M]. Springer , 2013 .
HILLENBRAND M , LORENZ L , KLEINDIENST R , et al . Spectrally multiplexed chromatic confocal multipoint sensing [J]. Optics Letters , 2013 , 38 ( 22 ): 4694 - 4697 . doi: 10.1364/ol.38.004694 http://dx.doi.org/10.1364/ol.38.004694
PÉGARD N C , LIU H Y , ANTIPA N , et al . Compressive light-field microscopy for 3D neural activity recording [J]. Optica , 2016 , 3 ( 5 ): 517 - 524 . doi: 10.1364/optica.3.000517 http://dx.doi.org/10.1364/optica.3.000517
ZHU H , WANG Q , YU J Y . Light field imaging: models, calibrations, reconstructions, and applications [J]. Frontiers of Information Technology & Electronic Engineering , 2017 , 18 ( 9 ): 1236 - 1249 . doi: 10.1631/fitee.1601727 http://dx.doi.org/10.1631/fitee.1601727
LUMSDAINE A , GEORGIEV T . The focused plenoptic camera [C]. 2009 IEEE International Conference on Computational Photography (ICCP). April 16 - 17 , 2009 . San Francisco, CA, USA. IEEE , 2009 . doi: 10.1109/iccphot.2009.5559008 http://dx.doi.org/10.1109/iccphot.2009.5559008
LUMSDAINE A , GEORGIEV T . Full resolution lightfield rendering [R]. Indiana University and Adobe Systems , 2008 ,91: 92 .
TROUVÉ-PELOUX P , CHAMPAGNAT F , LE BESNERAIS G , et al . Theoretical performance model for single image depth from defocus [J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision , 2014 , 31 ( 12 ): 2650 - 2662 . doi: 10.1364/josaa.31.002650 http://dx.doi.org/10.1364/josaa.31.002650
KUMAR H , YADAV A S , GUPTA S , et al . Depth map estimation using defocus and motion cues [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2019 , 29 ( 5 ): 1365 - 1379 . doi: 10.1109/tcsvt.2018.2832086 http://dx.doi.org/10.1109/tcsvt.2018.2832086
WATANABE M , NAYAR S K . Rational filters for passive depth from defocus [J]. International Journal of Computer Vision , 1998 , 27 ( 3 ): 203 - 225 . doi: 10.1023/a:1007905828438 http://dx.doi.org/10.1023/a:1007905828438
SHECHTMAN Y , SAHL S J , BACKER A S , et al . Optimal point spread function design for 3D imaging [J]. Physical Review Letters , 2014 , 113 ( 13 ): 133902 . doi: 10.1103/physrevlett.113.133902 http://dx.doi.org/10.1103/physrevlett.113.133902
ZHANG A Q , WANG J H , ZHOU Y G , et al . Illumination optics in emerging naked-eye 3d display (invited review) [J]. Progress in Electromagnetics Research , 2017 , 159 : 93 - 124 . doi: 10.2528/pier17060101 http://dx.doi.org/10.2528/pier17060101
ZHAN T , YIN K , XIONG J H , et al . Augmented reality and virtual reality displays: perspectives and challenges [J]. iScience , 2020 , 23 ( 8 ): 101397 . doi: 10.1016/j.isci.2020.101397 http://dx.doi.org/10.1016/j.isci.2020.101397
CAKMAKCI O , ROLLAND J . Head-worn displays: a review [J]. Journal of Display Technology , 2006 , 2 ( 3 ): 199 - 216 . doi: 10.1109/jdt.2006.879846 http://dx.doi.org/10.1109/jdt.2006.879846
TAY S , BLANCHE P A , VOORAKARANAM R , et al . An updatable holographic three-dimensional display [J]. Nature , 2008 , 451 ( 7179 ): 694 - 698 . doi: 10.1038/nature06596 http://dx.doi.org/10.1038/nature06596
BLANCHE P A , BABLUMIAN A , VOORAKARANAM R , et al . Holographic three-dimensional telepresence using large-area photorefractive polymer [J]. Nature , 2010 , 468 ( 7320 ): 80 - 83 . doi: 10.1038/nature09521 http://dx.doi.org/10.1038/nature09521
PARK J H , HONG K , LEE B . Recent progress in three-dimensional information processing based on integral imaging [J]. Applied Optics , 2009 , 48 ( 34 ): H77 - H94 . doi: 10.1364/ao.48.000h77 http://dx.doi.org/10.1364/ao.48.000h77
BONZOM V , DITTRICH B . 3D holography: from discretum to continuum [J]. Journal of High Energy Physics , 2016 , 2016 ( 3 ): 208 . doi: 10.1007/jhep03(2016)208 http://dx.doi.org/10.1007/jhep03(2016)208
KIM I , MARTINS R J , JANG J , et al . Nanophotonics for light detection and ranging technology [J]. Nature Nanotechnology , 2021 , 16 ( 5 ): 508 - 524 . doi: 10.1038/s41565-021-00895-3 http://dx.doi.org/10.1038/s41565-021-00895-3
YU N F , GENEVET P , KATS M A , et al . Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science , 2011 , 334 ( 6054 ): 333 - 337 . doi: 10.1126/science.1210713 http://dx.doi.org/10.1126/science.1210713
KILDISHEV A V , BOLTASSEVA A , SHALAEV V M . Planar photonics with metasurfaces [J]. Science , 2013 , 339 ( 6125 ): 1232009 . doi: 10.1126/science.1232009 http://dx.doi.org/10.1126/science.1232009
YU N F , CAPASSO F . Flat optics with designer metasurfaces [J]. Nature Materials , 2014 , 13 ( 2 ): 139 - 150 . doi: 10.1038/nmat3839 http://dx.doi.org/10.1038/nmat3839
LIN D M , FAN P Y , HASMAN E , et al . Dielectric gradient metasurface optical elements [J]. Science , 2014 , 345 ( 6194 ): 298 - 302 . doi: 10.1126/science.1253213 http://dx.doi.org/10.1126/science.1253213
AIETA F , GENEVET P , KATS M A , et al . Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Letters , 2012 , 12 ( 9 ): 4932 - 4936 . doi: 10.1021/nl302516v http://dx.doi.org/10.1021/nl302516v
KRUK S , HOPKINS B , KRAVCHENKO I I , et al . Invited Article: Broadband highly efficient dielectric metadevices for polarization control [J]. APL Photonics , 2016 , 1 ( 3 ): 030801 . doi: 10.1063/1.4949007 http://dx.doi.org/10.1063/1.4949007
XU Z T , HUANG L L , LI X W , et al . Quantitatively correlated amplitude holography based on photon sieves [J]. Advanced Optical Materials , 2020 , 8 ( 2 ): 1901169 . doi: 10.1002/adom.201901169 http://dx.doi.org/10.1002/adom.201901169
LI J , ZHANG Y T , LI J N , et al . Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces [J]. Nanoscale , 2019 , 11 ( 12 ): 5746 - 5753 . doi: 10.1039/c9nr00675c http://dx.doi.org/10.1039/c9nr00675c
HUANG L L , CHEN X Z , MÜHLENBERND H , et al . Dispersionless phase discontinuities for controlling light propagation [J]. Nano Letters , 2012 , 12 ( 11 ): 5750 - 5755 . doi: 10.1021/nl303031j http://dx.doi.org/10.1021/nl303031j
DECKER M , STAUDE I , FALKNER M , et al . High-efficiency dielectric Huygens’ surfaces [J]. Advanced Optical Materials , 2015 , 3 ( 6 ): 813 - 820 . doi: 10.1002/adom.201400584 http://dx.doi.org/10.1002/adom.201400584
LI G X , CHEN S M , PHOLCHAI N , et al . Continuous control of the nonlinearity phase for harmonic generations [J]. Nature Materials , 2015 , 14 ( 6 ): 607 - 612 . doi: 10.1038/nmat4267 http://dx.doi.org/10.1038/nmat4267
ZHENG G X , MÜHLENBERND H , KENNEY M , et al . Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology , 2015 , 10 ( 4 ): 308 - 312 . doi: 10.1038/nnano.2015.2 http://dx.doi.org/10.1038/nnano.2015.2
HUANG L L , MÜHLENBERND H , LI X W , et al . Broadband hybrid holographic multiplexing with geometric metasurfaces [J]. Advanced Materials , 2015 , 27 ( 41 ): 6444 - 6449 . doi: 10.1002/adma.201502541 http://dx.doi.org/10.1002/adma.201502541
WEI Q , HUANG L , LI X , et al . Broadband multiplane holography based on plasmonic metasurface [J]. Advanced Optical Materials , 2017 , 5 ( 18 ): 1700434 . doi: 10.1002/adom.201700434 http://dx.doi.org/10.1002/adom.201700434
KHORASANINEJAD M , CHEN W T , DEVLIN R C , et al . Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science , 2016 , 352 ( 6290 ): 1190 - 1194 . doi: 10.1126/science.aaf6644 http://dx.doi.org/10.1126/science.aaf6644
CHEN X Z , HUANG L L , MÜHLENBERND H , et al . Dual-polarity plasmonic metalens for visible light [J]. Nature Communications , 2012 , 3 : 1198 . doi: 10.1038/ncomms2207 http://dx.doi.org/10.1038/ncomms2207
CHEN W T , ZHU A Y , SANJEEV V , et al . A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 220 - 226 . doi: 10.1038/s41565-017-0034-6 http://dx.doi.org/10.1038/s41565-017-0034-6
WANG S M , WU P C , SU V C , et al . A broadband achromatic metalens in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 227 - 232 . doi: 10.1038/s41565-017-0052-4 http://dx.doi.org/10.1038/s41565-017-0052-4
YUE F Y , WEN D D , XIN J T , et al . Vector vortex beam generation with a single plasmonic metasurface [J]. ACS Photonics , 2016 , 3 ( 9 ): 1558 - 1563 . doi: 10.1021/acsphotonics.6b00392 http://dx.doi.org/10.1021/acsphotonics.6b00392
CHEN W T , KHORASANINEJAD M , ZHU A Y , et al . Generation of wavelength-independent subwavelength Bessel beams using metasurfaces [J]. Light: Science & Applications , 2017 , 6 ( 5 ): e16259 . doi: 10.1038/lsa.2016.259 http://dx.doi.org/10.1038/lsa.2016.259
SONG X , HUANG L L , SUN L , et al . Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface [J]. Applied Physics Letters , 2018 , 112 ( 7 ): 073104 . doi: 10.1063/1.5013327 http://dx.doi.org/10.1063/1.5013327
LIN Z M , LI X W , ZHAO R Z , et al . High-efficiency Bessel beam array generation by Huygens metasurfaces [J]. Nanophotonics , 2019 , 8 ( 6 ): 1079 - 1085 . doi: 10.1515/nanoph-2019-0085 http://dx.doi.org/10.1515/nanoph-2019-0085
WANG D Y , LIU F F , LIU T , et al . Efficient generation of complex vectorial optical fields with metasurfaces [J]. Light: Science & Applications , 2021 , 10 : 67 . doi: 10.1038/s41377-021-00504-x http://dx.doi.org/10.1038/s41377-021-00504-x
YANG Y M , WANG W Y , BOULESBAA A , et al . Nonlinear fano-resonant dielectric metasurfaces [J]. Nano Letters , 2015 , 15 ( 11 ): 7388 - 7393 . doi: 10.1021/acs.nanolett.5b02802 http://dx.doi.org/10.1021/acs.nanolett.5b02802
CAMACHO-MORALES R , RAHMANI M , KRUK S , et al . Nonlinear generation of vector beams from AlGaAs nanoantennas [J]. Nano Letters , 2016 , 16 ( 11 ): 7191 - 7197 . doi: 10.1021/acs.nanolett.6b03525 http://dx.doi.org/10.1021/acs.nanolett.6b03525
KOSHELEV K , TANG Y T , LI K , et al . Nonlinear metasurfaces governed by bound states in the continuum [J]. ACS Photonics , 2019 , 6 ( 7 ): 1639 - 1644 . doi: 10.1021/acsphotonics.9b00700 http://dx.doi.org/10.1021/acsphotonics.9b00700
KUROIWA Y , TAKESHIMA N , NARITA Y , et al . Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements [J]. Optics Express , 2004 , 12 ( 9 ): 1908 - 1915 . doi: 10.1364/opex.12.001908 http://dx.doi.org/10.1364/opex.12.001908
NI Y B , CHEN S , WANG Y J , et al . Metasurface for structured light projection over 120° field of view [J]. Nano Letters , 2020 , 20 ( 9 ): 6719 - 6724 . doi: 10.1021/acs.nanolett.0c02586 http://dx.doi.org/10.1021/acs.nanolett.0c02586
LI Z L , DAI Q , MEHMOOD M Q , et al . Full-space cloud of random points with a scrambling metasurface [J]. Light: Science & Applications , 2018 , 7 : 63 . doi: 10.1038/s41377-018-0064-3 http://dx.doi.org/10.1038/s41377-018-0064-3
SONG X , HUANG L L , TANG C C , et al . Selective diffraction with complex amplitude modulation by dielectric metasurfaces [J]. Advanced Optical Materials , 2018 , 6 ( 4 ): 1701181 . doi: 10.1002/adom.201701181 http://dx.doi.org/10.1002/adom.201701181
LI N X , FU Y H , DONG Y , et al . Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation [J]. Nanophotonics , 2019 , 8 ( 10 ): 1855 - 1861 . doi: 10.1515/nanoph-2019-0208 http://dx.doi.org/10.1515/nanoph-2019-0208
XIE Y Y , NI P N , WANG Q H , et al . Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions [J]. Nature Nanotechnology , 2020 , 15 ( 2 ): 125 - 130 . doi: 10.1038/s41565-019-0611-y http://dx.doi.org/10.1038/s41565-019-0611-y
WANG QIU-HUA , NI PEI‐NAN , XIE YI‐YANG , et al . On‐chip generation of structured light based on metasurface optoelectronic integration [J]. Laser & Photonics Reviews , 2021 , 15 ( 3 ): 2000385 . doi: 10.1002/lpor.202000385 http://dx.doi.org/10.1002/lpor.202000385
WANG Y S , WEINACKER H , KOCH B . A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest [J]. Sensors (Basel, Switzerland) , 2008 , 8 ( 6 ): 3938 - 3951 . doi: 10.3390/s8063938 http://dx.doi.org/10.3390/s8063938
HUANG Y W , LEE H W H , SOKHOYAN R , et al . Gate-tunable conducting oxide metasurfaces [J]. Nano Letters , 2016 , 16 ( 9 ): 5319 - 5325 . doi: 10.1021/acs.nanolett.6b00555 http://dx.doi.org/10.1021/acs.nanolett.6b00555
KAFAIE SHIRMANESH G , SOKHOYAN R , PALA R A , et al . Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability [J]. Nano Letters , 2018 , 18 ( 5 ): 2957 - 2963 . doi: 10.1021/acs.nanolett.8b00351 http://dx.doi.org/10.1021/acs.nanolett.8b00351
KIM S I , PARK J , JEONG B G , et al . Electrically reconfigurable active metasurface for 3D distance ranging [C]. 2020 IEEE International Electron Devices Meeting . San Francisco, CA, USA . IEEE , 2020 : 7.1. 1 - 7 .1.4. doi: 10.1109/iedm13553.2020.9372059 http://dx.doi.org/10.1109/iedm13553.2020.9372059
PARK J , JEONG B G , KIM S I , et al . All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications [J]. Nature Nanotechnology , 2021 , 16 ( 1 ): 69 - 76 . doi: 10.1038/s41565-020-00787-y http://dx.doi.org/10.1038/s41565-020-00787-y
LEE J , JUNG S , CHEN P Y , et al . Ultrafast electrically tunable polaritonic metasurfaces [J]. Advanced Optical Materials , 2014 , 2 ( 11 ): 1057 - 1063 . doi: 10.1002/adom.201400185 http://dx.doi.org/10.1002/adom.201400185
WU P C , PALA R A , KAFAIE SHIRMANESH G , et al . Dynamic beam steering with all-dielectric electro-optic III~V multiple-quantum-well metasurfaces [J]. Nature Communications , 2019 , 10 : 3654 . doi: 10.1038/s41467-019-11598-8 http://dx.doi.org/10.1038/s41467-019-11598-8
KHAIDAROV E , LIU Z T , PANIAGUA‐DOMÍNGUEZ R , et al . Control of LED emission with functional dielectric metasurfaces [J]. Laser & Photonics Reviews , 2020 , 14 ( 1 ): 1900235 . doi: 10.1002/lpor.201900235 http://dx.doi.org/10.1002/lpor.201900235
DECRESCENT R A , IYER P P , MOHTASHAMI Y , et al . Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces [J]. Nature Photonics , 2020 , 14 ( 9 ): 543 - 548 . doi: 10.1038/s41566-020-0641-x http://dx.doi.org/10.1038/s41566-020-0641-x
ARBABI E , ARBABI A , KAMALI S M , et al . MEMS-tunable dielectric metasurface lens [J]. Nature Communications , 2018 , 9 ( 1 ): SF1J. 2 . doi: 10.1038/s41467-018-03155-6 http://dx.doi.org/10.1038/s41467-018-03155-6
HOLSTEEN A L , CIHAN A F , BRONGERSMA M L . Temporal color mixing and dynamic beam shaping with silicon metasurfaces [J]. Science , 2019 , 365 ( 6450 ): 257 - 260 . doi: 10.1126/science.aax5961 http://dx.doi.org/10.1126/science.aax5961
WATSON E A . Analysis of beam steering with decentered microlens arrays [J]. Optical Engineering , 1993 , 32 ( 11 ): 2665 . doi: 10.1117/12.148100 http://dx.doi.org/10.1117/12.148100
CHEN R , SHAO Y F , ZHOU Y , et al . A semisolid micromechanical beam steering system based on micrometa-lens arrays [J]. Nano Letters , 2022 , 22 ( 4 ): 1595 - 1603 . doi: 10.1021/acs.nanolett.1c04493 http://dx.doi.org/10.1021/acs.nanolett.1c04493
YIN X H , STEINLE T , HUANG L L , et al . Beam switching and bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications , 2017 , 6 ( 7 ): e17016 . doi: 10.1038/lsa.2017.16 http://dx.doi.org/10.1038/lsa.2017.16
LI S Q , XU X W , MARUTHIYODAN VEETIL R , et al . Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science , 2019 , 364 ( 6445 ): 1087 - 1090 . doi: 10.1126/science.aaw6747 http://dx.doi.org/10.1126/science.aaw6747
CHEN C , SONG W G , CHEN J W , et al . Spectral tomographic imaging with aplanatic metalens [J]. Light: Science & Applications , 2019 , 8 : 99 . doi: 10.1038/s41377-019-0208-0 http://dx.doi.org/10.1038/s41377-019-0208-0
EDREI E , WEISS A , ENGELBERG J , et al . Spectrally gated microscopy (SGM) with meta optics for parallel three-dimensional imaging [J]. ACS Nano , 2021 , 15 ( 11 ): 17375 - 17383 . doi: 10.1021/acsnano.1c06646 http://dx.doi.org/10.1021/acsnano.1c06646
STEPHENS D J , ALLAN V J . Light microscopy techniques for live cell imaging [J]. Science , 2003 , 300 ( 5616 ): 82 - 86 . doi: 10.1126/science.1082160 http://dx.doi.org/10.1126/science.1082160
DENK W , STRICKLER J H , WEBB W W . Two-photon laser scanning fluorescence microscopy [J]. Science , 1990 , 248 ( 4951 ): 73 - 76 . doi: 10.1126/science.2321027 http://dx.doi.org/10.1126/science.2321027
HUANG D , SWANSON E A , LIN C P , et al . Optical coherence tomography [J]. Science , 1991 , 254 ( 5035 ): 1178 - 1181 . doi: 10.1126/science.1957169 http://dx.doi.org/10.1126/science.1957169
PAHLEVANINEZHAD M , HUANG Y W , PAHLEVANI M , et al . Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions [J]. Nature Photonics , 2022 , 16 ( 3 ): 203 - 211 . doi: 10.1038/s41566-022-00956-6 http://dx.doi.org/10.1038/s41566-022-00956-6
ENGELBERG J , LEVY U . Achromatic flat lens performance limits [J]. Optica , 2021 , 8 ( 6 ): 834 . doi: 10.1364/optica.422843 http://dx.doi.org/10.1364/optica.422843
LIN R J , SU V C , WANG S M , et al . Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology , 2019 , 14 ( 3 ): 227 - 231 . doi: 10.1038/s41565-018-0347-0 http://dx.doi.org/10.1038/s41565-018-0347-0
PARK M , PARK C , HWANG Y S , et al . Virtual‐moving metalens array enabling light‐field imaging with enhanced resolution [J]. Advanced Optical Materials , 2020 , 8 ( 21 ): 2000820 . doi: 10.1002/adom.202000820 http://dx.doi.org/10.1002/adom.202000820
MAAS H G , GRUEN A , PAPANTONIOU D . Particle tracking velocimetry in three-dimensional flows [J]. Experiments in Fluids , 1993 , 15 ( 2 ): 133 - 146 . doi: 10.1007/bf00190953 http://dx.doi.org/10.1007/bf00190953
HOLSTEEN A L , LIN D M , KAUVAR I , et al . A light-field metasurface for high-resolution single-particle tracking [J]. Nano Letters , 2019 , 19 ( 4 ): 2267 - 2271 . doi: 10.1021/acs.nanolett.8b04673 http://dx.doi.org/10.1021/acs.nanolett.8b04673
LIU W W , MA D N , LI Z C , et al . Aberration-corrected three-dimensional positioning with a single-shot metalens array [J]. Optica , 2020 , 7 ( 12 ): 1706 - 1713 . doi: 10.1364/optica.406039 http://dx.doi.org/10.1364/optica.406039
PARK Y , DEPEURSINGE C , POPESCU G . Quantitative phase imaging in biomedicine [J]. Nature Photonics , 2018 , 12 ( 10 ): 578 - 589 . doi: 10.1038/s41566-018-0253-x http://dx.doi.org/10.1038/s41566-018-0253-x
KWON H , ARBABI E , KAMALI S M , et al . Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces [J]. Nature Photonics , 2020 , 14 ( 2 ): 109 - 114 . doi: 10.1038/s41566-019-0536-x http://dx.doi.org/10.1038/s41566-019-0536-x
HUANG P S , ZHANG S . Fast three-step phase-shifting algorithm [J]. Applied Optics , 2006 , 45 ( 21 ): 5086 - 5091 . doi: 10.1364/ao.45.005086 http://dx.doi.org/10.1364/ao.45.005086
GUO Q , SHI Z J , HUANG Y W , et al . Compact single-shot metalens depth sensors inspired by eyes of jumping spiders [J]. Proceedings of the National Academy of Sciences of the United States of America , 2019 , 116 ( 46 ): 22959 - 22965 . doi: 10.1073/pnas.1912154116 http://dx.doi.org/10.1073/pnas.1912154116
TAN S Y , YANG F , BOOMINATHAN V , et al . 3D imaging using extreme dispersion in optical metasurfaces [J]. ACS Photonics , 2021 , 8 ( 5 ): 1421 - 1429 . doi: 10.1021/acsphotonics.1c00110 http://dx.doi.org/10.1021/acsphotonics.1c00110
JIN C Q , ZHANG J H , GUO C L . Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging [J]. Nanophotonics , 2019 , 8 ( 3 ): 451 - 458 . doi: 10.1515/nanoph-2018-0216 http://dx.doi.org/10.1515/nanoph-2018-0216
JIN C Q , AFSHARNIA M , BERLICH R , et al . Dielectric metasurfaces for distance measurements and three-dimensional imaging [J]. Advanced Photonics , 2019 , 1 ( 3 ): 23 - 31 . doi: 10.1117/1.ap.1.3.036001 http://dx.doi.org/10.1117/1.ap.1.3.036001
COLBURN S , MAJUMDAR A . Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction [J]. ACS Photonics , 2020 , 7 ( 6 ): 1529 - 1536 . doi: 10.1021/acsphotonics.0c00354 http://dx.doi.org/10.1021/acsphotonics.0c00354
XIONG J H , HSIANG E L , HE Z Q , et al . Augmented reality and virtual reality displays: emerging technologies and future perspectives [J]. Light: Science & Applications , 2021 , 10 ( 1 ): 216 . doi: 10.1038/s41377-021-00658-8 http://dx.doi.org/10.1038/s41377-021-00658-8
LI L , ZHANG J , HU Y Q , et al . Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible [J]. Laser & Photonics Reviews , 2021 , 15 ( 11 ): 2100198 . doi: 10.1002/lpor.202100198 http://dx.doi.org/10.1002/lpor.202100198
HU Y Q , OU X N , ZENG T B , et al . Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region [J]. Nano Letters , 2021 , 21 ( 11 ): 4554 - 4562 . doi: 10.1021/acs.nanolett.1c00104 http://dx.doi.org/10.1021/acs.nanolett.1c00104
GABOR D . A new microscopic principle [J]. Nature , 1948 , 161 ( 4098 ): 777 - 778 . doi: 10.1038/161777a0 http://dx.doi.org/10.1038/161777a0
BROWN B R , LOHMANN A W . Complex spatial filtering with binary masks [J]. Applied Optics , 1966 , 5 ( 6 ): 967 - 969 . doi: 10.1364/ao.5.000967 http://dx.doi.org/10.1364/ao.5.000967
FUKUSHIMA S , KUROKAWA T , OHNO M . Real-time hologram construction and reconstruction using a high-resolution spatial light modulator [J]. Applied Physics Letters , 1991 , 58 ( 8 ): 787 - 789 . doi: 10.1063/1.104516 http://dx.doi.org/10.1063/1.104516
JIANG Q , JIN G F , CAO L C . When metasurface meets hologram: principle and advances [J]. Advances in Optics and Photonics , 2019 , 11 ( 3 ): 518 . doi: 10.1364/aop.11.000518 http://dx.doi.org/10.1364/aop.11.000518
HUANG L L , CHEN X Z , MÜHLENBERND H , et al . Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications , 2013 , 4 ( 1 ): 2808 . doi: 10.1038/ncomms3808 http://dx.doi.org/10.1038/ncomms3808
LI X P , REN H R , CHEN X , et al . Athermally photoreduced graphene oxides for three-dimensional holographic images [J]. Nature Communications , 2015 , 6 ( 1 ): 6984 . doi: 10.1038/ncomms7984 http://dx.doi.org/10.1038/ncomms7984
LI X , CHEN L W , LI Y , et al . Multicolor 3D meta-holography by broadband plasmonic modulation [J]. Science Advances , 2016 , 2 ( 11 ): e1601102 . doi: 10.1126/sciadv.1601102 http://dx.doi.org/10.1126/sciadv.1601102
CHOI Y S , LEE S , JUNG J Y , et al . Optical metasurface-based holographic stereogram [J]. Advanced Optical Materials , 2020 , 8 ( 8 ): 1901970 . doi: 10.1002/adom.201901970 http://dx.doi.org/10.1002/adom.201901970
FENG H , LI Q T , WAN W P , et al . Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram [J]. ACS Photonics , 2019 , 6 ( 11 ): 2910 - 2916 . doi: 10.1021/acsphotonics.9b01017 http://dx.doi.org/10.1021/acsphotonics.9b01017
GAO H , WANG Y X , FAN X H , et al . Dynamic 3D meta-holography in visible range with large frame number and high frame rate [J]. Science Advances , 2020 , 6 ( 28 ): eaba8595 . doi: 10.1126/sciadv.aba8595 http://dx.doi.org/10.1126/sciadv.aba8595
XIAO X , JAVIDI B , MARTINEZ-CORRAL M , et al . Advances in three-dimensional integral imaging: sensing, display, and applications [J]. Applied Optics , 2013 , 52 ( 4 ): 546 - 560 . doi: 10.1364/ao.52.000546 http://dx.doi.org/10.1364/ao.52.000546
ZHANG J L , WANG X R , YANG Y , et al . Flat dielectric metasurface lens array for three dimensional integral imaging [J]. Optics Communications , 2018 , 414 : 1 - 4 . doi: 10.1016/j.optcom.2017.12.075 http://dx.doi.org/10.1016/j.optcom.2017.12.075
ZHANG J L , LAN X , ZHANG C , et al . Switchable near-eye integral imaging display with difunctional metalens array [J]. Optik , 2020 , 204 : 163852 . doi: 10.1016/j.ijleo.2019.163852 http://dx.doi.org/10.1016/j.ijleo.2019.163852
FAN Z B , QIU H Y , ZHANG H L , et al . A broadband achromatic metalens array for integral imaging in the visible [J]. Light: Science & Applications , 2019 , 8 ( 1 ): ITu4B. 4 . doi: 10.1038/s41377-019-0178-2 http://dx.doi.org/10.1038/s41377-019-0178-2
WAN W Q , QIAO W , PU D L , et al . Holographic sampling display based on metagratings [J]. iScience , 2020 , 23 ( 1 ): 100773 . doi: 10.1016/j.isci.2019.100773 http://dx.doi.org/10.1016/j.isci.2019.100773
HUA J Y , HUA E K , ZHOU F B , et al . Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex [J]. Light: Science & Applications , 2021 , 10 ( 1 ): 213 . doi: 10.1038/s41377-021-00651-1 http://dx.doi.org/10.1038/s41377-021-00651-1
LEE G Y , HONG J Y , HWANG S , et al . Metasurface eyepiece for augmented reality [J]. Nature Communications , 2018 , 9 ( 1 ): 4562 . doi: 10.1038/s41467-018-07011-5 http://dx.doi.org/10.1038/s41467-018-07011-5
LI Z Y , LIN P , HUANG Y W , et al . Meta-optics achieves RGB-achromatic focusing for virtual reality [J]. Science Advances , 2021 , 7 ( 5 ): eabe4458 . doi: 10.1126/sciadv.abe4458 http://dx.doi.org/10.1126/sciadv.abe4458
SONG W T , LIANG X N , LI S Q , et al . 3D holographic displays: large‐scale Huygens’ metasurfaces for holographic 3D near‐eye displays (laser photonics rev. 15(9)/2021) [J]. Laser & Photonics Reviews , 2021 , 15 ( 9 ): 2170047 . doi: 10.1002/lpor.202170047 http://dx.doi.org/10.1002/lpor.202170047
PHAN T , SELL D , WANG E W , et al . High-efficiency, large-area, topology-optimized metasurfaces [J]. Light: Science & Applications , 2019 , 8 ( 1 ): 48 . doi: 10.1038/s41377-019-0159-5 http://dx.doi.org/10.1038/s41377-019-0159-5
TSENG E , COLBURN S , WHITEHEAD J , et al . Neural nano-optics for high-quality thin lens imaging [J]. Nature Communications , 2021 , 12 : 6493 . doi: 10.1038/s41467-021-26443-0 http://dx.doi.org/10.1038/s41467-021-26443-0
PRESUTTI F , MONTICONE F . Focusing on bandwidth: achromatic metalens limits [J]. Optica , 2020 , 7 ( 6 ): 624 - 631 . doi: 10.1364/optica.389404 http://dx.doi.org/10.1364/optica.389404
SELL D , YANG J J , DOSHAY S , et al . Large-angle, multifunctional metagratings based on freeform multimode geometries [J]. Nano Letters , 2017 , 17 ( 6 ): 3752 - 3757 . doi: 10.1021/acs.nanolett.7b01082 http://dx.doi.org/10.1021/acs.nanolett.7b01082
LIN Z , LIU V , PESTOURIE R , et al . Topology optimization of freeform large-area metasurfaces [J]. Optics Express , 2019 , 27 ( 11 ): 15765 - 15775 . doi: 10.1364/oe.27.015765 http://dx.doi.org/10.1364/oe.27.015765
CHRISTIANSEN R E , LIN Z , ROQUES-CARMES C , et al . Fullwave Maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses [J]. Optics Express , 2020 , 28 ( 23 ): 33854 - 33868 . doi: 10.1364/oe.403192 http://dx.doi.org/10.1364/oe.403192
CHUNG H , MILLER O D . High-NA achromatic metalenses by inverse design [J]. Optics Express , 2020 , 28 ( 5 ): 6945 - 6965 . doi: 10.1364/oe.385440 http://dx.doi.org/10.1364/oe.385440
MANSOUREE M , KWON H , ARBABI E , et al . Multifunctional 25D metastructures enabled by adjoint optimization [J]. Optica , 2020 , 7 ( 1 ): 77 - 84 . doi: 10.1364/optica.374787 http://dx.doi.org/10.1364/optica.374787
JIANG J Q , SELL D , HOYER S , et al . Free-form diffractive metagrating design based on generative adversarial networks [J]. ACS Nano , 2019 , 13 ( 8 ): 8872 - 8878 . doi: 10.1021/acsnano.9b02371 http://dx.doi.org/10.1021/acsnano.9b02371
AN S S , FOWLER C , ZHENG B W , et al . A deep learning approach for objective-driven all-dielectric metasurface design [J]. ACS Photonics , 2019 , 6 ( 12 ): 3196 - 3207 . doi: 10.1021/acsphotonics.9b00966 http://dx.doi.org/10.1021/acsphotonics.9b00966
SO S , BADLOE T , NOH J , et al . Deep learning enabled inverse design in nanophotonics [J]. Nanophotonics , 2020 , 9 ( 5 ): 1041 - 1057 . doi: 10.1515/nanoph-2019-0474 http://dx.doi.org/10.1515/nanoph-2019-0474
YANG Z Y , WANG Z K , WANG Y X , et al . Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications , 2018 , 9 ( 1 ): 4607 . doi: 10.1038/s41467-018-07056-6 http://dx.doi.org/10.1038/s41467-018-07056-6
RUBIN N A , D'AVERSA G , CHEVALIER P , et al . Matrix Fourier optics enables a compact full-Stokes polarization camera [J]. Science , 2019 , 365 ( 6448 ): eaax1839 . doi: 10.1126/science.aax1839 http://dx.doi.org/10.1126/science.aax1839
FARAJI-DANA M , ARBABI E , KWON H , et al . Hyperspectral imager with folded metasurface optics [J]. ACS Photonics , 2019 , 6 ( 8 ): 2161 - 2167 . doi: 10.1021/acsphotonics.9b00744 http://dx.doi.org/10.1021/acsphotonics.9b00744
KANG L , JENKINS R P , WERNER D H . Recent progress in active optical metasurfaces [J]. Advanced Optical Materials , 2019 , 7 ( 14 ): 1801813 . doi: 10.1002/adom.201801813 http://dx.doi.org/10.1002/adom.201801813
0
Views
1497
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution