浏览全部资源
扫码关注微信
中国科学院 微电子研究所 微电子器件与集成技术重点实验室,北京 100029
Received:25 February 2022,
Revised:08 April 2022,
Published:10 August 2022
移动端阅览
谢常青.衍射光学元件成套制造技术研究进展[J].光学精密工程,2022,30(15):1815-1827.
XIE Changqing.Research progress on complete fabrication technology of diffractive optical elements[J].Optics and Precision Engineering,2022,30(15):1815-1827.
谢常青.衍射光学元件成套制造技术研究进展[J].光学精密工程,2022,30(15):1815-1827. DOI: 10.37188/OPE.20223015.1815.
XIE Changqing.Research progress on complete fabrication technology of diffractive optical elements[J].Optics and Precision Engineering,2022,30(15):1815-1827. DOI: 10.37188/OPE.20223015.1815.
从图形数据处理、先进光刻、图形转移和大面积高可靠集成4方面开展衍射光学元件关键制造技术研究。在兼容标准CMOS工艺的基础上,提出了高精度、多功能(高保真、高深宽比、高面形、多元化衬基等)、大面积衍射光学元件成套制造技术。研发了精度优于2 nm的复杂图形光刻数据处理体系,提出了混合光刻方法,建立了加法(剥离、电镀)和减法(干法刻蚀、金属辅助化学刻蚀)两种类型、四种图形转移基础方法。实现了从微米尺度到亚10 nm尺度的图形生成, 高宽比达12∶1的25 nm Au结构和深宽比达500∶1的30 nm Al
2
O
3
纳米管图形转移。在熔石英、多层膜、SiC自支撑薄膜、高面形硅片等衬基上大面积集成制造了多种衍射光学元件,最大面积为142 mm×142 mm,最大自支撑口径达70 mm,最高面形精度PV值达0.03λ,覆盖了可见光到硬X射线波段衍射光学元件的制造需求,能够应用于先进光刻机、同步辐射、激光聚变及X射线天文学中。
The key fabrication technology for diffractive optical elements (DOE) was systematically investigated from the following four aspects: graphic data processing, advanced lithography, pattern transfer, and large-area integration with high reliability. Based on the standard CMOS process, a complete set of manufacturing technologies for DOE with high precision, multi-functionality (high fidelity, high aspect ratio, high surface flatness, multiple substrates, etc.), and large area was proposed. A data processing system with precision greater than 2 nm is developed for complex pattern lithography. Moreover, a hybrid lithography method was proposed and two types of basic pattern transfer techniques and four different processes are established, including additive processes (lift-off and electroplating) and subtractive processes (drying etching and low-temperature metal assisted chemical etching). Importantly, we demonstrate the pattern generation from micron to sub-10 nm scale, pattern transfer of 25 nm gold structures with aspect ratio of 12∶1, and 30 nm Al
2
O
3
nanotubes with aspect ratio up to 500∶1. Based on various substrates, including fused quartz, multilayer film, SiC self-supporting membrane, and wafer with high surface flatness, various large-area DOEs are integrated. The maximum area is 142 mm×142 mm, the maximum self-supporting aperture is 70 mm, and the highest surface flatness is 0.03λ peak to valley. Our proposed framework can meet the manufacturing requirements of various DOEs, covering the spectral bands ranging from visible light to hard X-rays. Various DOEs are used in four major optical projects, including advanced lithography, synchrotron radiation, laser fusion, and X-ray astronomy, as well as more than 1 000 domestic and foreign universities, scientific research institutes, and high-tech enterprises.
金国藩,二元光学 [M]. 北京 : 国防工业出版社 , 1998 . doi: 10.12173/j.issn.1004-5511.202111004 http://dx.doi.org/10.12173/j.issn.1004-5511.202111004
JIN G F . Binary Optics [M]. Beijing : National Defense Industry Press , 1998 . (in Chinese) . doi: 10.12173/j.issn.1004-5511.202111004 http://dx.doi.org/10.12173/j.issn.1004-5511.202111004
LOHMANN A W . A pre-history of computer-generated holography [J]. Optics and Photonics News , 2008 , 19 ( 2 ): 36 - 47 . doi: 10.1364/opn.19.2.000036 http://dx.doi.org/10.1364/opn.19.2.000036
REINHARD V . Diffractive optics [J]. Advanced Optical Technologies , 2021 , 10 ( 1 ): 17 - 18 . doi: 10.1515/aot-2021-0007 http://dx.doi.org/10.1515/aot-2021-0007
LEGER J , HOLZ M , SWANSON G . Coherent laser beam addition- An application of binary-optics technology [R]. The Lincoln Laboratory , 1988 .
刘帅 , 刘春雨 , 王天聪 . 星载空间目标监视折衍射光学成像系统设计 [J]. 光学精密工程 , 2017 , 25 ( 12 z): 24 - 31 . doi: 10.1117/12.2285166 http://dx.doi.org/10.1117/12.2285166
LIU SH , LIU CH Y , WANG T C . Refractive-diffractive optical imaging system for satellite-borne surveillance of space targets [J]. Optics and Precision Engineering , 2017 , 25 ( 12 z): 24 - 31 . (in Chinese) . doi: 10.1117/12.2285166 http://dx.doi.org/10.1117/12.2285166
张健 , 栗孟娟 , 阴刚华 , 等 . 用于太空望远镜的大口径薄膜菲涅尔衍射元件 [J]. 光学 精密工程 , 2016 , 24 ( 6 ): 1289 - 1296 . doi: 10.3788/ope.20162406.1289 http://dx.doi.org/10.3788/ope.20162406.1289
ZHANG J , LI M J , YIN G H , et al . Large-diameter membrane Fresnel diffraction elements for space telescope [J]. Optics and Precision Engineering , 2016 , 24 ( 6 ): 1289 - 1296 . (in Chinese) . doi: 10.3788/ope.20162406.1289 http://dx.doi.org/10.3788/ope.20162406.1289
陈宜方 . X射线衍射光学部件的制备及其光学性能表征 [J]. 光学 精密工程 , 2017 , 25 ( 11 ): 2779 - 2795 . doi: 10.3788/ope.20172511.2779 http://dx.doi.org/10.3788/ope.20172511.2779
CHEN Y F . Fabrication of diffractive X-ray optics and their performance characterization [J]. Optics and Precision Engineering , 2017 , 25 ( 11 ): 2779 - 2795 . (in Chinese) . doi: 10.3788/ope.20172511.2779 http://dx.doi.org/10.3788/ope.20172511.2779
ZHANG F , ZHU J , YUE W R , et al . An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography [J]. Optics Express , 2015 , 23 ( 4 ): 4482 - 4493 . doi: 10.1364/oe.23.004482 http://dx.doi.org/10.1364/oe.23.004482
LEONARD J , CARRIERE J , STACK J , et al . An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems [J]. SPIE , 2008 , 6924 : 692420 . doi: 10.1117/12.774666 http://dx.doi.org/10.1117/12.774666
GROSSINGER I , KEDMI J . Diffractive optical element for extreme ultraviolet wavefront control : US20030081316 [P]. 2003-05-01 .
WAIBLINGER M , KORNILOV K , HOFMANN T , et al . E-beam induced EUV photomask repair: a perfect match [C]. SPIE Proceedings" , " 26th European Mask and Lithography Conference. Grenoble, France. SPIE , 2010 , 7545 : 754509 . doi: 10.1117/12.863542 http://dx.doi.org/10.1117/12.863542
周常河 . 微纳光学结构及应用 [J]. 激光与光电子学进展 , 2009 , 46 ( 10 ): 22 - 27 . doi: 10.3788/lop20094610.0022 http://dx.doi.org/10.3788/lop20094610.0022
ZHOU CH H . Micro- & nano- optical structures and applications [J]. Laser & Optoelectronics Progress , 2009 , 46 ( 10 ): 22 - 27 . (in Chinese) . doi: 10.3788/lop20094610.0022 http://dx.doi.org/10.3788/lop20094610.0022
VAN SCHOOT J , VAN SETTEN E , TROOST K , et al . High-NA EUV lithography exposure tool: program progress [C]. Extreme Ultraviolet (EUV) Lithography XI. February 23 - 27 , 2020 . San Jose, USA. SPIE , 2020 , 11323 : 1132307 . doi: 10.1117/12.2551491 http://dx.doi.org/10.1117/12.2551491
International Roadmap for Devices and Systems [Z/OL] . https://irds.ieee.org/ https://irds.ieee.org/ . doi: 10.1109/irds54852.2021.00006 http://dx.doi.org/10.1109/irds54852.2021.00006
VELDKAMP W B . Binary optics and beyond: where do we go from here? [J]. Japanese Journal of Applied Physics , 2006 , 45 ( 8 b): 6550 - 6554 . doi: 10.1143/jjap.45.6550 http://dx.doi.org/10.1143/jjap.45.6550
MANFRINATO V R , ZHANG L H , SU D , et al . Resolution limits of electron-beam lithography toward the atomic scale [J]. Nano Letters , 2013 , 13 ( 4 ): 1555 - 1558 . doi: 10.1021/nl304715p http://dx.doi.org/10.1021/nl304715p
CHAO W L , KIM J , REKAWA S , et al . Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy [J]. Optics Express , 2009 , 17 ( 20 ): 17669 - 17677 . doi: 10.1364/oe.17.017669 http://dx.doi.org/10.1364/oe.17.017669
KAZANSKIY N L , SKIDANOV R V . Technological line for creation and research of diffractive optical elements [C]. Optical Technologies for Telecommunications 2018. November 20 - 22 , 2018 . Ufa, Russian Federation. SPIE , 2019 , 11146 : 11460W . doi: 10.1117/12.2527274 http://dx.doi.org/10.1117/12.2527274
CHANG C , SAKDINAWAT A . Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics [J]. Nature Communications , 2014 , 5 : 4243 . doi: 10.1038/ncomms5243 http://dx.doi.org/10.1038/ncomms5243
AKAN R , FRISK T , LUNDBERG F , et al . Metal-assisted chemical etching and electroless deposition for fabrication of hard X-ray Pd/Si zone plates [J]. Micromachines , 2020 , 11 ( 3 ): 301 . doi: 10.3390/mi11030301 http://dx.doi.org/10.3390/mi11030301
ZHU J Y , CHEN Y F , XIE S S , et al . Nanofabrication of 30 nm Au zone plates by e-beam lithography and pulse voltage electroplating for soft X-ray imaging [J]. Microelectronic Engineering , 2020 , 225 : 111254 . doi: 10.1016/j.mee.2020.111254 http://dx.doi.org/10.1016/j.mee.2020.111254
LI Z Q , CHEN Y Q , ZHU X P , et al . Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching [J]. Nanotechnology , 2016 , 27 ( 36 ): 365302 . doi: 10.1088/0957-4484/27/36/365302 http://dx.doi.org/10.1088/0957-4484/27/36/365302
LIU Q , ZHAO J , GUO J L , et al . Sub-5 nm lithography with single GeV heavy ions using inorganic resist [J]. Nano Letters , 2021 , 21 ( 6 ): 2390 - 2396 . doi: 10.1021/acs.nanolett.0c04304 http://dx.doi.org/10.1021/acs.nanolett.0c04304
刘容 . 中国科学院微电子中心开发出0.8微米集成电路 [J]. 高技术通讯 , 1995 , 5 ( 8 ): 62 , 54 . doi: 10.3321/j.issn:1002-0470.1995.08.021 http://dx.doi.org/10.3321/j.issn:1002-0470.1995.08.021
LIU R . The microelectronics centre of CAS developed the technique of fabricating of 0.8 μm integration circuits [J]. High Technology Letters , 1995 , 5 ( 8 ): 62 , 54 . (in Chinese) . doi: 10.3321/j.issn:1002-0470.1995.08.021 http://dx.doi.org/10.3321/j.issn:1002-0470.1995.08.021
谢常青 , 叶甜春 , 孙宝银 , 等 . 0.5μm分辨率同步辐射X射线光刻技术 [J]. 微细加工技术 , 1999 ( 3 ): 32 - 34, 5 .
XIE CH Q , YE T CH , SUN B Y , et al . Synchrotron radiation X ray lithography technique for 0.5μm resolution [J]. Microfabrication Technology , 1999 ( 3 ): 32 - 34, 5 . (in Chinese)
谢常青 , 朱效立 , 牛洁斌 , 等 . 微纳金属光学结构制备技术及应用 [J]. 光学学报 , 2011 , 31 ( 9 ): 0900128 . doi: 10.3788/aos201131.0900128 http://dx.doi.org/10.3788/aos201131.0900128
XIE CH Q , ZHU X L , NIU J B , et al . Micro-and nano-metal structures fabrication technology and applications [J]. Acta Optica Sinica , 2011 , 31 ( 9 ): 0900128 . (in Chinese) . doi: 10.3788/aos201131.0900128 http://dx.doi.org/10.3788/aos201131.0900128
XIE C Q , ZHU X L , LI H L , et al . Hybrid lithography for X-ray diffractive optical elements [J]. SPIE Newsroom , 2014 , 1075 : 107551 .
DI FABRIZIO E , CABRINI S , COJOC D , et al . Shaping X-rays by diffractive coded nano-optics [J]. Microelectronic Engineering , 2003 , 67/68 : 87 - 95 . doi: 10.1016/s0167-9317(03)00063-7 http://dx.doi.org/10.1016/s0167-9317(03)00063-7
SHE A L , ZHANG S Y , SHIAN S , et al . Large area metalenses: design, characterization, and mass manufacturing [J]. Optics Express , 2018 , 26 ( 2 ): 1573 - 1585 . doi: 10.1364/oe.26.001573 http://dx.doi.org/10.1364/oe.26.001573
LI H L , YE T C , SHI L N , et al . Fabrication of ultra-high aspect ratio (>160∶1) silicon nanostructures by using Au metal assisted chemical etching [J]. Journal of Micromechanics and Microengineering , 2017 , 27 ( 12 ): 124002 . doi: 10.1088/1361-6439/aa96c4 http://dx.doi.org/10.1088/1361-6439/aa96c4
LI H L , XIE C Q . Fabrication of ultra-high aspect ratio ( > 420∶1) Al 2 O 3 nanotube arraysby sidewall TransferMetal assistant chemical etching [J]. Micromachines , 2020 , 11 ( 4 ): 378 . doi: 10.3390/mi11040378 http://dx.doi.org/10.3390/mi11040378
杜宇禅 , 李海亮 , 史丽娜 , 等 . 32nm节点极紫外光刻掩模的集成研制 [J]. 光学学报 , 2013 , 33 ( 10 ): 327 - 333 . doi: 10.3788/aos201333.1034002 http://dx.doi.org/10.3788/aos201333.1034002
DU Y CH , LI H L , SHI L N , et al . Integrated development of extreme ultraviolet lithography mask at 32nm node [J]. Acta Optica Sinica , 2013 , 33 ( 10 ): 327 - 333 . (in Chinese) . doi: 10.3788/aos201333.1034002 http://dx.doi.org/10.3788/aos201333.1034002
LOUIS E , YAKSHIN AE , GÖRTS P C , et al . Progress in Mo/Si multilayer coating technology for EUVL optics [J]. SPIE , 2000 , 3997 : 406 - 411 . doi: 10.1117/12.390077 http://dx.doi.org/10.1117/12.390077
LIU Y , XIE C Q . Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 2015 , 33 ( 5 ): 05E114 . doi: 10.1116/1.4926896 http://dx.doi.org/10.1116/1.4926896
XIE C Q , ZHU X L , LI H L , et al . Fabrication of X-ray diffractive optical elements for laser fusion applications [J]. Optical Engineering , 2013 , 52 ( 3 ): 033402 . doi: 10.1117/1.oe.52.3.033402 http://dx.doi.org/10.1117/1.oe.52.3.033402
WANG E L , NIU J B , LIANG Y H , et al . Complete control of multichannel, angle‐multiplexed, and arbitrary spatially varying polarization fields [J]. Advanced Optical Materials , 2020 , 8 ( 6 ): 1901674 . doi: 10.1002/adom.201901674 http://dx.doi.org/10.1002/adom.201901674
OU Y , QU F R , WANG G Y , et al . A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology [J]. Applied Physics Letters , 2016 , 109 ( 2 ): 023512 . doi: 10.1063/1.4958842 http://dx.doi.org/10.1063/1.4958842
HEILMANN R K , BRUCCOLERI A R , SONG J , et al . Toward volume manufacturing of high-performance soft X-ray critical-angle transmission gratings [EB/OL]. 2020: arXiv : 2012 . 04607 . https://arxiv.org/abs/2012.04607 https://arxiv.org/abs/2012.04607 . doi: 10.1117/12.2562388 http://dx.doi.org/10.1117/12.2562388
0
Views
1156
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution