浏览全部资源
扫码关注微信
1.海军工程大学 动力工程学院,湖北 武汉 430033
2.中国人民解放军92840部队,山东 青岛 266500
Received:10 June 2021,
Revised:29 July 2021,
Published:25 August 2022
移动端阅览
王洋,杨立.旋转机械红外智能状态监测与故障诊断[J].光学精密工程,2022,30(16):1905-1914.
WANG Yang,YANG Li.Infrared intelligent condition monitoring and fault diagnosis of rotating machinery[J].Optics and Precision Engineering,2022,30(16):1905-1914.
王洋,杨立.旋转机械红外智能状态监测与故障诊断[J].光学精密工程,2022,30(16):1905-1914. DOI: 10.37188/OPE.20223016.1905.
WANG Yang,YANG Li.Infrared intelligent condition monitoring and fault diagnosis of rotating machinery[J].Optics and Precision Engineering,2022,30(16):1905-1914. DOI: 10.37188/OPE.20223016.1905.
旋转机械是机械设备的核心部件,一旦发生故障将会造成重大损失,因此旋转机械的实时监测诊断十分必要,为此本文针对旋转机械监测诊断开展研究,提出了一种基于深度学习的旋转机械红外智能诊断方法。搭建了旋转机械故障模拟实验台,预置电动机正常、过载、短路三种状态以及转子系统正常、不平衡、不对中三种状态,使用红外热像仪采集旋转机械表面温度,然后进行红外成像与增强;使用目标检测算法对图像中的旋转机械部件进行识别和定位,并根据检测结果对部件区域进行红外图像重构;最后使用图像分类算法对两类部件进行状态分类,从而实现智能故障诊断。实验结果表明,该方法对于本文中的旋转机械系统智能故障诊断准确率为90.06%,取得了较好的智能诊断效果。此外,该方法和流程经过部件类型和故障种类的扩展后,对于旋转机械故障诊断乃至机械故障诊断具有一定的参考和应用价值。
Rotating machineries are core components of mechanical equipment, and faults in such machineries can cause significant losses; thus, the real-time monitoring and diagnosis of rotating machinery are highly necessary. Therefore, we study the monitoring and diagnosis of rotating machinery and propose an infrared intelligent diagnosis method for rotating machinery based on deep learning. In this study, we develop a rotating machinery fault simulation test-bed, with three preset motor states: normal, overloaded, and short-circuited and three rotor system states: normal, imbalanced, and misaligned. The surface temperature of the rotating machinery is recorded using an infrared thermal imager, followed by infrared imaging and enhancement. A target detection algorithm is used to identify and locate the rotating machinery parts in the image, and an infrared image of the part is reconstructed according to the detection results. Finally, an image classification algorithm is used to classify the two types of components, thus achieving intelligent fault diagnosis. The experimental results reveal that the accuracy of the intelligent fault diagnosis for rotating machinery is 90.06 %, and a good intelligent diagnosis effect can be realized. In addition, after the expansion of component and fault types, the method and process may be used as a reference for rotating machinery fault diagnosis and even mechanical fault diagnosis.
张承亮 . 旋转机械故障诊断方法概述 [J]. 科技情报开发与经济 , 2008 ( 26 ): 191 - 193 . doi: 10.3969/j.issn.1005-6033.2008.26.105 http://dx.doi.org/10.3969/j.issn.1005-6033.2008.26.105
ZHANG C L . Summarization on the fault diagnosis of rotating machinery [J]. Sci-Tech Information Development & Economy , 2008 ( 26 ): 191 - 193 . (in Chinese) . doi: 10.3969/j.issn.1005-6033.2008.26.105 http://dx.doi.org/10.3969/j.issn.1005-6033.2008.26.105
程玉兰 . 红外诊断技术与应用(一) [J]. 设备管理与维修 , 2003 ( 9 ): 41 - 43 . doi: 10.3969/j.issn.1001-0599.2003.09.035 http://dx.doi.org/10.3969/j.issn.1001-0599.2003.09.035
CHENG Y L . Lectures: infared diagnosis technique and application(1) [J]. Plant Maintenance Engineering , 2003 ( 9 ): 41 - 43 . (in Chinese) . doi: 10.3969/j.issn.1001-0599.2003.09.035 http://dx.doi.org/10.3969/j.issn.1001-0599.2003.09.035
周可慧 . 基于改进AlexNet模型的关键变电设备红外图像智能分析 [D]. 广州 : 华南理工大学 , 2020 .
ZHOU K H . Intelligent Analysis of Infrared Images of Key Substation Equipment Based on Improved AlexNet Model [D]. Guangzhou : South China University of Technology , 2020 . (in Chinese)
李军锋 . 基于深度学习的电力设备图像识别及应用研究 [D]. 广州 : 广东工业大学 , 2018 .
LI J F . Research on Electric Equipment Image Recognition and its Application based on Deep Learning [D]. Guangzhou : Guangdong University of Technology , 2018 . (in Chinese)
尹思宇 . 深度学习在变电站电力设备缺陷检测中的应用研究 [D]. 成都 : 电子科技大学 , 2020 .
YIN S Y . A Research on Application of Deep Learning in Defect Detection of Power Equipment in Substations [D]. Chengdu : University of Electronic Science and Technology of China , 2020 . (in Chinese)
杨浩 . 基于深度学习的电气设备红外图像检索系统的研究与实现 [D]. 南昌 : 华东交通大学 , 2020 .
YANG H . Research and Implementation of Infrared Image Retrieval System for Electrical Equipment Based on Deep Learning [D]. Nanchang : East China Jiaotong University , 2020 . (in Chinese)
NASIRI A , TAHERI-GARAVAND A , OMID M , et al . Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images [J]. Applied Thermal Engineering , 2019 , 163 : 114410 . doi: 10.1016/j.applthermaleng.2019.114410 http://dx.doi.org/10.1016/j.applthermaleng.2019.114410
WEI C , TAO F B , LIN Y D , et al . Substation equipment thermal fault diagnosis model based on ResNet and improved Bayesian optimization [C]. 2019 9th International Conference on Power and Energy Systems (ICPES). Perth , WA , Australia . IEEE , 2019 : 1 - 5 . doi: 10.1109/icpes47639.2019.9105594 http://dx.doi.org/10.1109/icpes47639.2019.9105594
李文璞 , 谢可 , 廖逍 , 等 . 基于Faster RCNN变电设备红外图像缺陷识别方法 [J]. 南方电网技术 , 2019 , 13 ( 12 ): 79 - 84 .
LI W P , XIE K , LIAO X , et al . Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN [J]. Southern Power System Technology , 2019 , 13 ( 12 ): 79 - 84 . (in Chinese)
郭梦浩 , 徐红伟 . 基于Faster RCNN的红外热图像热斑缺陷检测研究 [J]. 计算机系统应用 , 2019 , 28 ( 11 ): 265 - 270 .
GUO M H , XU H W . Hot spot defect detection based on infrared thermal image and faster RCNN [J]. Computer Systems & Applications , 2019 , 28 ( 11 ): 265 - 270 . (in Chinese)
刘子全 , 付慧 , 李玉杰 , 等 . 基于Mask-RCNN迁移学习的红外图像电力设备检测 [J]. 数据采集与处理 , 2021 , 36 ( 1 ): 176 - 183 .
LIU Z Q , FU H , LI Y J , et al . Electrical equipment detection in infrared images based on transfer learning of mask-RCNN [J]. Journal of Data Acquisition and Processing , 2021 , 36 ( 1 ): 176 - 183 . (in Chinese)
周仿荣 , 马仪 , 马御棠 , 等 . 基于电力设备红外图像的故障点快速识别算法 [J]. 电力设备管理 , 2019 , ( 10 ): 193 - 195 .
ZHOU F R , MA Y , MA Y T , et al . Algorithm of quick detection of fault locations based on electrical power equipment's infrared imagery [J]. Electric Power Equipment Management , 2019 ( 10 ): 193 - 195 . (in Chinese)
王永平 , 张红民 , 彭闯 , 等 . 基于YOLO v3的高压开关设备异常发热点目标检测方法 [J]. 红外技术 , 2020 , 42 ( 10 ): 983 - 987 . doi: 10.3724/sp.j.7103116038 http://dx.doi.org/10.3724/sp.j.7103116038
WANG Y P , ZHANG H M , PENG C , et al . The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3 [J]. Infrared Technology , 2020 , 42 ( 10 ): 983 - 987 . (in Chinese) . doi: 10.3724/sp.j.7103116038 http://dx.doi.org/10.3724/sp.j.7103116038
KIM J S , CHOI K N , KANG S W . Infrared thermal image-based sustainable fault detection for electrical facilities [J]. Sustainability , 2021 , 13 ( 2 ): 557 . doi: 10.3390/su13020557 http://dx.doi.org/10.3390/su13020557
KWAN C , CHOU B , YANG J , et al . Deep learning based target tracking and classification for infrared videos using compressive measurements [J]. Journal of Signal and Information Processing , 2019 , 10 ( 4 ): 167 - 199 . doi: 10.4236/jsip.2019.104010 http://dx.doi.org/10.4236/jsip.2019.104010
王旭红 , 李浩 , 樊绍胜 , 等 . 基于改进SSD的电力设备红外图像异常自动检测方法 [J]. 电工技术学报 , 2020 , 35 ( S1 ): 302 - 310 .
WANG X H , LI H , FAN S S , et al . Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection [J]. Transactions of China Electrotechnical Society , 2020 , 35 ( S1 ): 302 - 310 . (in Chinese)
李浩 . 基于计算机视觉的电力设备红外检测研究 [D]. 长沙 : 长沙理工大学 , 2019 .
LI H . Research on Infrared Detection of Power Equipment based on Computer Vision [D]. Changsha : Changsha University of Science & Technology , 2019 . (in Chinese)
王彦博 , 陈培峰 , 徐亮 , 等 . 基于嵌入式深度学习的电力设备红外热成像故障识别 [J]. 计算机系统应用 , 2020 , 29 ( 6 ): 97 - 103 .
WANG Y B , CHEN P F , XU L , et al . Fault recognition of power equipment in infrared thermal images based on deep learning with embedded devices [J]. Computer Systems & Applications , 2020 , 29 ( 6 ): 97 - 103 . (in Chinese)
EKSTROM M . Digital image processing [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing , 1980 , 28 ( 4 ): 484 - 486 . doi: 10.1109/tassp.1980.1163437 http://dx.doi.org/10.1109/tassp.1980.1163437
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 . doi: 10.1109/tpami.2016.2577031 http://dx.doi.org/10.1109/tpami.2016.2577031
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, NV, USA . IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
0
Views
761
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution