的高灵敏探测需求,提出了高精细度光学反馈腔衰荡光谱技术,研究了光学反馈对腔模信号的影响、系统的灵敏度以及光谱扫描法。在精细度大于100 000的V型谐振腔上实现了光学反馈腔衰荡光谱技术,对比了有/无光反馈时腔模信号的差别,验证了光反馈效应可以提高激光到腔的耦合效率。发展了固定腔长的光反馈检测技术,将腔的自由光谱范围FSR用作光谱相对频率标尺,基于HITRAN数据库中两条吸收谱线的绝对波长和测量到的相对位置进行对比分析,得到腔的FSR为0.004 2 cm
-
1
。然后,运用allan方差分析了系统的检测能力,测得系统的噪声等效吸收系数为1.1×10
-10
cm
-1
Hz
-1/2
,当积分时间为4.7 s时,系统灵敏度为8×10
-11
cm
-1
。最后,提出了连续电压扫描的激光器频率控制扫描方法,用1.5×10
-
6
的标气对该方法进行了验证,得到测量精度为6.8×10
-9
。该方法在仪器工程化方面极具潜力。
Abstract
To meet the requirements of high-sensitivity detection of CH
4
, a greenhouse gas, this study developed a high-finesse optical feedback cavity ring-down spectroscopy technique. The influence of optical feedback on the cavity mode signal, the sensitivity of the system, and the method of spectral scanning were mainly studied. First, the optical feedback cavity ring-down spectroscopy technique was realized on a V-shaped resonator with a finesse greater than 100 000, and the difference between the cavity mode signal with and without optical feedback was compared, verifying that the optical feedback effect can improve the coupling between the laser and cavity. Second, an optical feedback detection technique with a fixed cavity length was developed, and the free spectral range (FSR) of the cavity was used as a spectral relative frequency scale. Based on a comparative analysis of the absolute wavelengths and measured relative positions of the two absorption lines in the HITRAN database, the FSR of the cavity was obtained as 0.004 2 cm
-1
. Then, the detection capability of the system was analyzed using Allan variance, and the noise equivalent absorption coefficient of the system was measured to be 1.1×10
-10
cm
-1
Hz
-1/2
. When the integration time was 4.7 s, the sensitivity of the system was 8×10
-11
cm
-1
. Finally, a laser frequency-controlled scanning method with continuous voltage scanning was proposed. The method was verified with a standard gas of 1.5×10
-6
and a measurement accuracy of 6.8×10
-9
. This method has great potential for instrument engineering.
LI M X , CHEN B , RUAN J , et al . On-line detection of carbon dioxide in large scale offshore by laser technology [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1424 - 1432 . (in Chinese) . doi: 10.37188/OPE.20202807.1424 http://dx.doi.org/10.37188/OPE.20202807.1424
YUAN F , GAO J , YAO L , et al . Development of highly sensitive balloon-borne methane measurement system based on cavity ringdown spectroscopy [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 1881 - 1892 . (in Chinese) . doi: 10.37188/OPE.20202809.1881 http://dx.doi.org/10.37188/OPE.20202809.1881
WANG P Y , WAN F , WANG J X , et al . Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking [J]. Opt. Precision Eng. , 2018 , 26 ( 8 ): 1917 - 1924 . (in Chinese) . doi: 10.3788/ope.20182608.1917 http://dx.doi.org/10.3788/ope.20182608.1917
DENG H , LI M X , HE Y B , et al . Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO 2 column absorption measurements [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 2020 , 230 : 118071 . doi: 10.1016/j.saa.2020.118071 http://dx.doi.org/10.1016/j.saa.2020.118071
BLACK E D . An introduction to Pound-Drever-Hall laser frequency stabilization [J]. American Journal of Physics , 2001 , 69 ( 1 ): 79 - 87 . doi: 10.1119/1.1286663 http://dx.doi.org/10.1119/1.1286663
GUO R M , TENG J H , CAO K , et al . Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters [J]. Optics Express , 2019 , 27 ( 22 ): 31850 - 31863 . doi: 10.1364/oe.27.031850 http://dx.doi.org/10.1364/oe.27.031850
MORVILLE J , KASSI S , CHENEVIER M , et al . Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking [J]. Applied Physics B , 2005 , 80 ( 8 ): 1027 - 1038 . doi: 10.1007/s00340-005-1828-z http://dx.doi.org/10.1007/s00340-005-1828-z
ROMANINI D , CHENEVIER M , KASSI S , et al . Optical-feedback cavity-enhanced absorption: a compact spectrometer for real-time measurement of atmospheric methane [J]. Applied Physics B , 2006 , 83 ( 4 ): 659 - 667 . doi: 10.1007/s00340-006-2177-2 http://dx.doi.org/10.1007/s00340-006-2177-2
HAMILTON D J , NIX M G D , BARAN S G , et al . Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) in a ring cavity [J]. Applied Physics B , 2010 , 100 ( 2 ): 233 - 242 . doi: 10.1007/s00340-009-3811-6 http://dx.doi.org/10.1007/s00340-009-3811-6
ZHAO G , TIAN J F , HODGES J T , et al . Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry-Perot cavity [J]. Optics Letters , 2021 , 46 ( 13 ): 3057 - 3060 . doi: 10.1364/ol.427083 http://dx.doi.org/10.1364/ol.427083
LONG D A , CYGAN A , VAN ZEE R D , et al . Frequency-stabilized cavity ring-down spectroscopy [J]. Chemical Physics Letters , 2012 , 536 : 1 - 8 . doi: 10.1016/j.cplett.2012.03.035 http://dx.doi.org/10.1016/j.cplett.2012.03.035
HE Y B , ORR B J . Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity [J]. Chemical Physics Letters , 2000 , 319 ( 1/2 ): 131 - 137 . doi: 10.1016/s0009-2614(00)00107-x http://dx.doi.org/10.1016/s0009-2614(00)00107-x
ORR B J , HE Y B . Rapidly swept continuous-wave cavity-ringdown spectroscopy [J]. Chemical Physics Letters , 2011 , 512 ( 1/2/3 ): 1 - 20 . doi: 10.1016/j.cplett.2011.05.052 http://dx.doi.org/10.1016/j.cplett.2011.05.052
TAN Z Q , LONG X W , YANG K Y , et al . Spectral ripple effect in continuous-wave fold-type cavity ring down spectroscopy [J]. Journal of the Optical Society of America B , 2010 , 27 ( 12 ): 2727 - 2730 . doi: 10.1364/josab.27.002727 http://dx.doi.org/10.1364/josab.27.002727
WERLE P , MÜCKE R , SLEMR F . The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS) [J]. Applied Physics B , 1993 , 57 ( 2 ): 131 - 139 . doi: 10.1007/bf00425997 http://dx.doi.org/10.1007/bf00425997