浏览全部资源
扫码关注微信
1.南京理工大学 化学与化工学院,江苏 南京 210094
2.中国科学院 上海高等研究院,上海 201210
Received:21 June 2022,
Revised:11 July 2022,
Published:10 October 2022
移动端阅览
陈捷达,李东栋,朱绪飞等.柔性钙钛矿电池的机械稳定性提升策略[J].光学精密工程,2022,30(19):2332-2352.
CHEN Jieda,LI Dongdong,ZHU Xufei,et al.Strategy of improving mechanical stability of flexible perovskite solar cells[J].Optics and Precision Engineering,2022,30(19):2332-2352.
陈捷达,李东栋,朱绪飞等.柔性钙钛矿电池的机械稳定性提升策略[J].光学精密工程,2022,30(19):2332-2352. DOI: 10.37188/OPE.20223019.2332.
CHEN Jieda,LI Dongdong,ZHU Xufei,et al.Strategy of improving mechanical stability of flexible perovskite solar cells[J].Optics and Precision Engineering,2022,30(19):2332-2352. DOI: 10.37188/OPE.20223019.2332.
柔性钙钛矿太阳能电池具有柔性、轻量化、低成本和高功率转换效率的特点,在光伏领域极具发展前景。然而,脆性的电极和多晶钙钛矿薄膜限制了柔性钙钛矿太阳能电池的机械稳定性,电池中各层材料间热膨胀系数不匹配、界面处结合力较弱等因素也显著制约了钙钛矿电池的柔性提升,成为其商业化进程的潜在阻碍。本文回顾了近年来柔性钙钛矿电池在衬底、电极、钙钛矿膜层及界面方面重要的柔性改善工作,综述了柔性钙钛矿电池不同功能层的机械稳定性提升策略,并对高效率、机械稳定的柔性钙钛矿电池的未来发展方向进行了初步展望。
Among flexible photovoltaic technologies, flexible perovskite solar cells have emerged as the most attractive and promising technology because of their flexibility, low weight, low cost, and high power conversion efficiency. However, flexible perovskite solar cells have limited mechanical robustness. This issue is related to the use of rigid electrode and perovskite thin films and the large difference in the coefficient of thermal expansion between different layers. The mechanical stability of flexible perovskite solar cells must be further improved to promote the commercialization of these batteries. This paper reviewed recently published studies focusing on improving the flexibility of substrates, electrode, perovskite thin films, and interfaces. Accordingly, the main effective strategies to improve the mechanical robustness of flexible perovskite solar cells was summarized. Finally, we have briefly outlined potential development directions for highly efficient and flexible perovskite solar cells.
ZHOU Q S , QIU J M , WANG Y F , et al . Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells [J]. ACS Energy Letters , 2021 , 6 ( 4 ): 1596 - 1606 . doi: 10.1021/acsenergylett.1c01135 http://dx.doi.org/10.1021/acsenergylett.1c01135
YANG Q , LIU X , YU S W , et al . Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells [J]. Energy & Environmental Science , 2021 , 14 ( 12 ): 6536 - 6545 . doi: 10.1039/d1ee02248b http://dx.doi.org/10.1039/d1ee02248b
LI X , MENG Y , LIU R Z , et al . High-efficiency and durable inverted perovskite solar cells with thermally-induced phase-change electron extraction layer [J]. Advanced Energy Materials , 2021 , 11 ( 47 ): 2102844 . doi: 10.1002/aenm.202102844 http://dx.doi.org/10.1002/aenm.202102844
ZHENG Z , LI F , GONG J , et al . Pre‐Buried Additive for Cross‐Layer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22% [J]. Advanced Materials , 2022 : 2109879 . doi: 10.1002/adma.202109879 http://dx.doi.org/10.1002/adma.202109879
LI G , SHENG L , LI T Y , et al . Engineering flexible dye-sensitized solar cells for portable electronics [J]. Solar Energy , 2019 , 177 : 80 - 98 . doi: 10.1016/j.solener.2018.11.017 http://dx.doi.org/10.1016/j.solener.2018.11.017
ÁGUAS H , MATEUS T , VICENTE A , et al . Thin film silicon photovoltaic cells on paper for flexible indoor applications [J]. Advanced Functional Materials , 2015 , 25 ( 23 ): 3592 - 3598 . doi: 10.1002/adfm.201500636 http://dx.doi.org/10.1002/adfm.201500636
CHIRILĂ A , REINHARD P , PIANEZZI F , et al . Potassium-induced surface modification of Cu(In, Ga)Se 2 thin films for high-efficiency solar cells [J]. Nature Materials , 2013 , 12 ( 12 ): 1107 - 1111 . doi: 10.1038/nmat3789 http://dx.doi.org/10.1038/nmat3789
DI GIACOMO F , FAKHARUDDIN A , JOSE R , et al . Progress, challenges and perspectives in flexible perovskite solar cells [J]. Energy & Environmental Science , 2016 , 9 ( 10 ): 3007 - 3035 . doi: 10.1039/c6ee01137c http://dx.doi.org/10.1039/c6ee01137c
TAVAKOLI M M , TSUI K H , ZHANG Q P , et al . Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures [J]. ACS Nano , 2015 , 9 ( 10 ): 10287 - 10295 . doi: 10.1021/acsnano.5b04284 http://dx.doi.org/10.1021/acsnano.5b04284
张耀 , 曹小平 , 王春芬 . 材料力学 [M]. 北京 : 清华大学出版社 , 2015 .
ZHANG Y , CAO X P , WANG CH F . Mechanics of materials [M]. Beijing : Tsinghua University Press , 2015 . (in Chinese)
ZHAO J J , DENG Y H , WEI H T , et al . Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells [J]. Science Advances , 2017 , 3 ( 11 ): eaao5616 . doi: 10.1126/sciadv.aao5616 http://dx.doi.org/10.1126/sciadv.aao5616
BRAGG W H , BRAGG W L . The reflection of X-rays by crystals [J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , 1913 , 88 ( 605 ): 428 - 438 . doi: 10.1098/rspa.1913.0040 http://dx.doi.org/10.1098/rspa.1913.0040
ZHU C , NIU X X , FU Y H , et al . Strain engineering in perovskite solar cells and its impacts on carrier dynamics [J]. Nature Communications , 2019 , 10 : 815 . doi: 10.1038/s41467-019-08507-4 http://dx.doi.org/10.1038/s41467-019-08507-4
AHN S M , JUNG E D , KIM S H , et al . Nanomechanical approach for flexibility of organic-inorganic hybrid perovskite solar cells [J]. Nano Letters , 2019 , 19 ( 6 ): 3707 - 3715 . doi: 10.1021/acs.nanolett.9b00796 http://dx.doi.org/10.1021/acs.nanolett.9b00796
SEONG S , LIU Y M , GONG X W . Mechanical study of perovskite solar cells: opportunities and challenges for wearable power source [J]. Optical Materials Express , 2022 , 12 ( 2 ): 772 - 787 . doi: 10.1364/ome.450214 http://dx.doi.org/10.1364/ome.450214
YU J G , WANG M C , LIN S C . Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices [J]. ACS Nano , 2016 , 10 ( 12 ): 11044 - 11057 . doi: 10.1021/acsnano.6b05913 http://dx.doi.org/10.1021/acsnano.6b05913
SUN S J , FANG Y N , KIESLICH G , et al . Mechanical properties of organic-inorganic halide perovskites, CH 3 NH 3 PbX 3 (X = I, Br and Cl), by nanoindentation [J]. Journal of Materials Chemistry A , 2015 , 3 ( 36 ): 18450 - 18455 . doi: 10.1039/c5ta03331d http://dx.doi.org/10.1039/c5ta03331d
DOU B J , MILLER E M , CHRISTIANS J A , et al . High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO [J]. The Journal of Physical Chemistry Letters , 2017 , 8 ( 19 ): 4960 - 4966 . doi: 10.1021/acs.jpclett.7b02128 http://dx.doi.org/10.1021/acs.jpclett.7b02128
KIM S , OH H , JEONG I , et al . Influence of a solvent trap in ITO/PEN substrates on the performance of flexible perovskite solar cells and light-emitting diodes [J]. ACS Applied Electronic Materials , 2021 , 3 ( 7 ): 3207 - 3217 . doi: 10.1021/acsaelm.1c00385 http://dx.doi.org/10.1021/acsaelm.1c00385
ROLDáN-CARMONA C , MALINKIEWICZ O , SORIANO A , et al . Flexible high efficiency perovskite solar cells [J]. Energy & Environmental Science , 2014 , 7 ( 3 ): 994 - 997 . doi: 10.1039/c3ee43619e http://dx.doi.org/10.1039/c3ee43619e
JIANG Y , QI Y B . Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology [J]. Materials Chemistry Frontiers , 2021 , 5 ( 13 ): 4833 - 4850 . doi: 10.1039/d1qm00279a http://dx.doi.org/10.1039/d1qm00279a
WANG H X , ZHENG M M , CHEN C , et al . Electron transport interface engineering with pyridine functionalized perylene diimide-based material for inverted perovskite solar cell [J]. Chemical Engineering Journal , 2022 , 438 : 135410 . doi: 10.1016/j.cej.2022.135410 http://dx.doi.org/10.1016/j.cej.2022.135410
BU T L , LI J , LI H Y , et al . Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J]. Science , 2021 , 372 ( 6548 ): 1327 - 1332 . doi: 10.1126/science.abh1035 http://dx.doi.org/10.1126/science.abh1035
ROLSTON N , BUSH K , PRINTZ A , et al . Engineering stress in perovskite solar cells to improve stability [J]. Advanced Energy Materials , 2018 , 8 ( 29 ): 1802139 . doi: 10.1002/aenm.201802139 http://dx.doi.org/10.1002/aenm.201802139
HASEGAWA M , ISHIGAMI T , ISHII J , et al . Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting [J]. European Polymer Journal , 2013 , 49 ( 11 ): 3657 - 3672 . doi: 10.1016/j.eurpolymj.2013.08.002 http://dx.doi.org/10.1016/j.eurpolymj.2013.08.002
DENG J J , ZHANG L W , HUI L A , et al . Indium tin oxide thin-film thermocouple probe based on sapphire microrod [J]. Sensors (Basel, Switzerland) , 2020 , 20 ( 5 ): 1289 . doi: 10.3390/s20051289 http://dx.doi.org/10.3390/s20051289
LEE G , KIM M C , CHOI Y W , et al . Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source [J]. Energy & Environmental Science , 2019 , 12 ( 10 ): 3182 - 3191 . doi: 10.1039/c9ee01944h http://dx.doi.org/10.1039/c9ee01944h
TAVAKOLI M M , LIN Q F , LEUNG S F , et al . Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates [J]. Nanoscale , 2016 , 8 ( 7 ): 4276 - 4283 . doi: 10.1039/c5nr08836d http://dx.doi.org/10.1039/c5nr08836d
SHI Y R , CHEN C H , LOU Y H , et al . Strategies of perovskite mechanical stability for flexible photovoltaics [J]. Materials Chemistry Frontiers , 2021 , 5 ( 20 ): 7467 - 7478 . doi: 10.1039/d1qm00616a http://dx.doi.org/10.1039/d1qm00616a
LUO Q , MA H , HOU Q Z , et al . All-carbon-electrode-based endurable flexible perovskite solar cells [J]. Advanced Functional Materials , 2018 , 28 ( 11 ): 1706777 . doi: 10.1002/adfm.201870069 http://dx.doi.org/10.1002/adfm.201870069
KANG S , JEONG J , CHO S , et al . Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance [J]. Journal of Materials Chemistry A , 2019 , 7 ( 3 ): 1107 - 1114 . doi: 10.1039/c8ta10585e http://dx.doi.org/10.1039/c8ta10585e
LAN S , YOON S , SEOK H J , et al . Low-temperature deposited highly flexible In-Zn-V-O transparent conductive electrode for perovskite solar cells [J]. ACS Applied Energy Materials , 2022 , 5 ( 1 ): 234 - 248 . doi: 10.1021/acsaem.1c02771 http://dx.doi.org/10.1021/acsaem.1c02771
HOU L X , WANG Y L , LIU X H , et al . 18.0% efficiency flexible perovskite solar cells based on double hole transport layers and CH 3 NH 3 PbI 3- x Cl x with dual additives [J]. Journal of Materials Chemistry C , 2018 , 6 ( 32 ): 8770 - 8777 . doi: 10.1039/c8tc02906g http://dx.doi.org/10.1039/c8tc02906g
FENG J S , ZHU X J , YANG Z , et al . Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy [J]. Advanced Materials (Deerfield Beach, Fla) , 2018 , 30 ( 35 ): e1801418 . doi: 10.1002/adma.201801418 http://dx.doi.org/10.1002/adma.201801418
LAN Y J , WANG Y , SONG Y L . Efficient flexible perovskite solar cells based on a polymer additive [J]. Flexible and Printed Electronics , 2020 , 5 ( 1 ): 014001 . doi: 10.1088/2058-8585/ab5ce3 http://dx.doi.org/10.1088/2058-8585/ab5ce3
HU X T , MENG X C , YANG X , et al . Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness [J]. Science Bulletin , 2021 , 66 ( 6 ): 527 - 535 . doi: 10.1016/j.scib.2020.10.023 http://dx.doi.org/10.1016/j.scib.2020.10.023
FAHIM M , FIRDOUS I , TSANG S W , et al . Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance [J]. Nano Energy , 2022 , 96 : 107058 . doi: 10.1016/j.nanoen.2022.107058 http://dx.doi.org/10.1016/j.nanoen.2022.107058
CHEN C H , SU Z H , LOU Y H , et al . Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics [J]. Advanced Materials , 2022 , 34 ( 16 ): 2200320 . doi: 10.1002/adma.202200320 http://dx.doi.org/10.1002/adma.202200320
MENG X C , CAI Z R , ZHANG Y Y , et al . Bio-inspired vertebral design for scalable and flexible perovskite solar cells [J]. Nature Communications , 2020 , 11 : 3016 . doi: 10.1038/s41467-020-16831-3 http://dx.doi.org/10.1038/s41467-020-16831-3
XUE T Y , CHEN G S , HU X T , et al . Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface [J]. ACS Applied Materials & Interfaces , 2021 , 13 ( 17 ): 19959 - 19969 . doi: 10.1021/acsami.1c00813 http://dx.doi.org/10.1021/acsami.1c00813
REN N Y , CHEN B B , LI R J , et al . Humidity-resistant flexible perovskite solar cells with over 20% efficiency [J]. Solar RRL , 2021 , 5 ( 4 ): 2000795 . doi: 10.1002/solr.202000795 http://dx.doi.org/10.1002/solr.202000795
MENG X C , XING Z , HU X T , et al . Stretchable perovskite solar cells with recoverable performance [J]. Angewandte Chemie (International Ed in English) , 2020 , 59 ( 38 ): 16602 - 16608 . doi: 10.1002/anie.202003813 http://dx.doi.org/10.1002/anie.202003813
FINKENAUER B P , GAO Y , WANG X K , et al . Mechanically robust and self-healable perovskite solar cells [J]. Cell Reports Physical Science , 2021 , 2 ( 2 ): 100320 . doi: 10.1016/j.xcrp.2020.100320 http://dx.doi.org/10.1016/j.xcrp.2020.100320
GE C D , LIU X T , YANG Z Q , et al . Thermal dynamic self‐healing supramolecular dopant towards efficient and stable flexible perovskite solar cells [J]. Angewandte Chemie International Edition , 2022 , 61 ( 12 ): e202116602 . doi: 10.1002/anie.202116602 http://dx.doi.org/10.1002/anie.202116602
CHEN Z Y , YIN R T , OBAID S N , et al . Flexible and transparent metal oxide/metal grid hybrid interfaces for electrophysiology and optogenetics [J]. Advanced Materials Technologies , 2020 , 5 ( 8 ): 2000322 . doi: 10.1002/admt.202000322 http://dx.doi.org/10.1002/admt.202000322
BAO C X , ZHU W D , YANG J , et al . Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes [J]. ACS Applied Materials & Interfaces , 2016 , 8 ( 36 ): 23868 - 23875 . doi: 10.1021/acsami.6b08318 http://dx.doi.org/10.1021/acsami.6b08318
HWANG H , KIM A , ZHONG Z Y , et al . Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes [J]. Advanced Functional Materials , 2016 , 26 ( 36 ): 6545 - 6554 . doi: 10.1002/adfm.201602094 http://dx.doi.org/10.1002/adfm.201602094
IM H G , JEONG S , JIN J , et al . Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells [J]. NPG Asia Materials , 2016 , 8 ( 6 ): e282 . doi: 10.1038/am.2016.85 http://dx.doi.org/10.1038/am.2016.85
KIM A , LEE H , KWON H C , et al . Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells [J]. Nanoscale , 2016 , 8 ( 12 ): 6308 - 6316 . doi: 10.1039/c5nr04585a http://dx.doi.org/10.1039/c5nr04585a
JUNG D , LIM C , SHIM H J , et al . Highly conductive and elastic nanomembrane for skin electronics [J]. Science , 2021 , 373 ( 6558 ): 1022 - 1026 . doi: 10.1126/science.abh4357 http://dx.doi.org/10.1126/science.abh4357
GAO B W , MENG J . Flexible CH 3 NH 3 PbI 3 perovskite solar cells with high stability based on all inkjet printing [J]. Solar Energy , 2021 , 230 : 598 - 604 . doi: 10.1016/j.solener.2021.10.072 http://dx.doi.org/10.1016/j.solener.2021.10.072
LEE E , AHN J , KWON H C , et al . All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection [J]. Advanced Energy Materials , 2018 , 8 ( 9 ): 1702182 . doi: 10.1002/aenm.201702182 http://dx.doi.org/10.1002/aenm.201702182
MENG X C , XU Y F , WANG Q X , et al . Silver mesh electrodes via electroless deposition-coupled inkjet-printing mask technology for flexible polymer solar cells [J]. Langmuir: the ACS Journal of Surfaces and Colloids , 2019 , 35 ( 30 ): 9713 - 9720 . doi: 10.1021/acs.langmuir.9b00846 http://dx.doi.org/10.1021/acs.langmuir.9b00846
LI Y W , MENG L , YANG Y , et al . High-efficiency robust perovskite solar cells on ultrathin flexible substrates [J]. Nature Communications , 2016 , 7 : 10214 . doi: 10.1038/ncomms10214 http://dx.doi.org/10.1038/ncomms10214
CHO S , KANG S , PANDYA A , et al . Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens [J]. ACS Nano , 2017 , 11 ( 4 ): 4346 - 4357 . doi: 10.1021/acsnano.7b01714 http://dx.doi.org/10.1021/acsnano.7b01714
LEE H M , KANG S B , CHUNG K B , et al . Transparent and flexible amorphous In-Si-O films for flexible organic solar cells [J]. Applied Physics Letters , 2013 , 102 ( 2 ): 021914 . doi: 10.1063/1.4788687 http://dx.doi.org/10.1063/1.4788687
MORALES-MASIS M , DE WOLF S , WOODS-ROBINSON R , et al . Transparent electrodes for efficient optoelectronics [J]. Advanced Electronic Materials , 2017 , 3 ( 5 ): 1600529 . doi: 10.1002/aelm.201600529 http://dx.doi.org/10.1002/aelm.201600529
PISONI S , CARRON R , MOSER T , et al . Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices [J]. NPG Asia Materials , 2018 , 10 ( 11 ): 1076 - 1085 . doi: 10.1038/s41427-018-0099-1 http://dx.doi.org/10.1038/s41427-018-0099-1
GIULIA L , BROWN T M . Development of highly bendable transparent window electrodes based on MoOx, SnO 2 , and Au dielectric/metal/dielectric stacks: application to indium tin oxide (ITO)-free perovskite solar cells [J]. Frontiers in Materials , 2019 , 6 : 310 . doi: 10.3389/fmats.2019.00310 http://dx.doi.org/10.3389/fmats.2019.00310
HAN G S , LEE S , DUFF M L , et al . Multi-functional transparent electrode for reliable flexible perovskite solar cells [J]. Journal of Power Sources , 2019 , 435 : 226768 . doi: 10.1016/j.jpowsour.2019.226768 http://dx.doi.org/10.1016/j.jpowsour.2019.226768
CASTRO-HERMOSA S , DAGAR J , MARSELLA A , et al . Perovskite solar cells on paper and the role of substrates and electrodes on performance [J]. IEEE Electron Device Letters , 2017 , 38 ( 9 ): 1278 - 1281 . doi: 10.1109/led.2017.2735178 http://dx.doi.org/10.1109/led.2017.2735178
GUO Y X , CHENG J L , LIU L , et al . Grains boundary networking interconnection design for robust flexible perovskite solar cell [J]. Materials Letters , 2021 , 292 : 129559 . doi: 10.1016/j.matlet.2021.129559 http://dx.doi.org/10.1016/j.matlet.2021.129559
HAN T H , LEE J W , CHOI C , et al . Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells [J]. Nature Communications , 2019 , 10 : 520 . doi: 10.1038/s41467-019-08455-z http://dx.doi.org/10.1038/s41467-019-08455-z
LEE J W , KIM H S , PARK N G . Lewis acid-base adduct approach for high efficiency perovskite solar cells [J]. Accounts of Chemical Research , 2016 , 49 ( 2 ): 311 - 319 . doi: 10.1021/acs.accounts.5b00440 http://dx.doi.org/10.1021/acs.accounts.5b00440
LI S , LIU X L , LI R , et al . Shear deformation dominates in the soft adhesive layers of the laminated structure of flexible electronics [J]. International Journal of Solids and Structures , 2017 , 110/111 : 305 - 314 . doi: 10.1016/j.ijsolstr.2016.12.006 http://dx.doi.org/10.1016/j.ijsolstr.2016.12.006
0
Views
1835
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution