浏览全部资源
扫码关注微信
1.哈尔滨工业大学 光电子技术研究所 可调谐(气体)激光技术重点实验室, 黑龙江 哈尔滨 150001
2.复杂系统控制与智能协同技术重点实验室,北京 100074
E-mail: sjf@hit.edu.cn
Received:02 June 2022,
Revised:01 August 2022,
Published:10 October 2022
移动端阅览
张银波,李昊阳,孙剑峰等.Gm-APD激光雷达的双参量估计透烟雾成像算法[J].光学精密工程,2022,30(19):2370-2378.
ZHANG Yinbo,LI Haoyang,SUN Jianfeng,et al.Imaging algorithm of dual-parameter estimation through smoke using Gm-APD lidar[J].Optics and Precision Engineering,2022,30(19):2370-2378.
张银波,李昊阳,孙剑峰等.Gm-APD激光雷达的双参量估计透烟雾成像算法[J].光学精密工程,2022,30(19):2370-2378. DOI: 10.37188/OPE.20223019.2370.
ZHANG Yinbo,LI Haoyang,SUN Jianfeng,et al.Imaging algorithm of dual-parameter estimation through smoke using Gm-APD lidar[J].Optics and Precision Engineering,2022,30(19):2370-2378. DOI: 10.37188/OPE.20223019.2370.
利用Gm-APD (Geiger mode avalanche photon diode)激光雷达对浓密烟雾背后的目标进行成像时,烟雾对激光的强后向散射和吸收能力,严重限制了传统算法对淹没在烟雾信号中目标信号的提取能力。提出了一种基于双参量估计的Gm-APD激光雷达透烟雾成像算法,介绍了基于Gm-APD激光雷达的触发模型和根据探测概率求解实际接收回波信号的原理,并且基于光子与烟雾粒子的碰撞理论和Mie散射理论,详细推导了Gamma模型两个参数的物理关系。根据推导的关系式提出了一种双参量估计算法,该算法考虑了如何精确估计
μ
,
k
两个参数。最后,开展了仿真和室内透雾实验,利用仿真实验检验
μ
,
k
关系式的正确性,利用室内实验验证提出算法的透雾成像能力。实验结果表明,相较于传统算法,本文提出算法重构图像的目标复原度提升了73%,结构相似性提升了0.228 9。该研究有效提升了Gm-APD激光雷达在烟雾环境中的目标感知能力。
When Geiger mode avalanche photo diode (Gm-APD) lidar is used to image targets obscured by dense smoke, the strong backscattering and absorption of laser light by the smoke severely limit the ability of traditional algorithms in extracting the target signal hidden in the smoke signal. To this end, we propose a Gm-APD lidar imaging algorithm based on dual-parameter estimation for imaging in smoke environments. First, this paper introduces a trigger model based on Gm-APD lidar and describes the principle for solving the actual received echo signal based on the detection probability. In addition, based on the collision theory of photons and smoke particles, as well as the Mie scattering theory, the physical relationship between the two parameters of the gamma model is derived. Second, a dual-parameter estimation algorithm is proposed based on the derived relationship, which considers approaches to accurately estimate μ and k. Finally, simulation and indoor experiments are conducted. The correctness of the relationship between μ and k is verified based on these simulation experiments, and the imaging ability of the proposed algorithm in the presence of smoke is verified through indoor experiments. The experimental results reveal that compared with traditional algorithms, the target recovery of the image reconstructed by the proposed algorithm increases by 73%, and the structural similarity increases by 0.228 9. Thus, this study effectively improves the target perception ability of Gm-APD lidar in smoke environments.
陈鹏 , 赵继广 , 宋一铄 . 激光近距探测抗气溶胶干扰方法研究进展 [J]. 兵器装备工程学报 , 2020 , 41 ( 8 ): 228 - 233 . doi: 10.11809/bqzbgcxb2020.08.042 http://dx.doi.org/10.11809/bqzbgcxb2020.08.042
CHEN P , ZHAO J G , SONG Y SH . Research progress on anti-aerosol interference methods for laser proximity detection [J]. Journal of Ordnance Equipment Engineering , 2020 , 41 ( 8 ): 228 - 233 . (in Chinese) . doi: 10.11809/bqzbgcxb2020.08.042 http://dx.doi.org/10.11809/bqzbgcxb2020.08.042
SATAT G , TANCIK M , RASKAR R . Towards photography through realistic fog [C]. 2018 IEEE International Conference on Computational Photography . Pittsburgh, PA, USA . IEEE , 2018 : 1 - 10 . doi: 10.1109/iccphot.2018.8368463 http://dx.doi.org/10.1109/iccphot.2018.8368463
SANG T H , TSAI S , YU T . Mitigating effects of uniform fog on SPAD lidars [J]. IEEE Sensors Letters , 2020 , 4 ( 9 ): 1 - 4 . doi: 10.1109/lsens.2020.3018708 http://dx.doi.org/10.1109/lsens.2020.3018708
MAU J , DEVRELIS V , DAY G , et al . The use of statistical mixture models to reduce noise in SPAD images of fog-obscured environments [C]. SPIE Future Sensing Technologies. Proc SPIE 11525, SPIE Future Sensing Technologies, Online Only . 2020 , 11525 : 140 - 149 . doi: 10.1117/12.2580251 http://dx.doi.org/10.1117/12.2580251
高尚 . Gm-APD激光雷达雾天成像重构算法研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2020 : 29 - 30 .
GAO SH . Research on Reconstruction Algorithm for Gm-APD Laser Radar Imaging in Fog [D]. Harbin : Harbin Institute of Technology , 2020 : 29 - 30 . (in Chinese)
郭世杭 . 基于模型参数估计的Gm-APD激光雷达透雾算法研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2021 : 30 - 31 .
GUO SH H . Research on Gm-APD Lidar Transmitting Algorithm Based on Model Parameter Estimation [D]. Harbin : Harbin Institute of Technology , 2021 : 30 - 31 . (in Chinese)
LIU D , SUN J F , GAO S , et al . Single-parameter estimation construction algorithm for Gm-APD ladar imaging through fog [J]. Optics Communications , 2021 , 482 : 126558 . doi: 10.1016/j.optcom.2020.126558 http://dx.doi.org/10.1016/j.optcom.2020.126558
郭世杭 , 陆威 , 孙剑峰 , 等 . 单量估计法单光子激光透雾成像 [J]. 光学 精密工程 , 2021 , 29 ( 6 ): 1234 - 1241 . doi: 10.37188/OPE.2020.0549 http://dx.doi.org/10.37188/OPE.2020.0549
GUO SH H , LU W , SUN J F , et al . Single quantity estimation method for single photon lidar dehazing imaging [J]. Opt. Precision Eng. , 2021 , 29 ( 6 ): 1234 - 1241 . (in Chinese) . doi: 10.37188/OPE.2020.0549 http://dx.doi.org/10.37188/OPE.2020.0549
ZHANG Y B , LI S N , SUN J F , et al . Dual-parameter estimation algorithm for Gm-APD Lidar depth imaging through smoke [J]. Measurement , 2022 , 196 : 111269 . doi: 10.1016/j.measurement.2022.111269 http://dx.doi.org/10.1016/j.measurement.2022.111269
ZHANG Y B , LI S N , JIANG P , et al . Depth imaging through realistic fog using Gm-APD Lidar [C]. Proc SPIE 11907, Sixteenth National Conference on Laser Technology and Optoelectronics , 2021 , 11907 : 146 - 154 . doi: 10.1117/12.2601815 http://dx.doi.org/10.1117/12.2601815
FOUCHE D G . Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors [J]. Applied Optics , 2003 , 42 ( 27 ): 5388 - 5398 . doi: 10.1364/ao.42.005388 http://dx.doi.org/10.1364/ao.42.005388
SUMLIN B J , HEINSON W R , CHAKRABARTY R K . Retrieving the aerosol complex refractive index using PyMieScatt: a Mie computational package with visualization capabilities [J]. Journal of Quantitative Spectroscopy and Radiative Transfer , 2018 , 205 : 127 - 134 . doi: 10.1016/j.jqsrt.2017.10.012 http://dx.doi.org/10.1016/j.jqsrt.2017.10.012
王康 . 雾霾的散射与传输特性研究 [D]. 西安 : 西安电子科技大学 , 2014 : 31 - 35 .
WANG K . Research on The Light Scattering And Propagation Characteristic of Haze [D]. Xi'an : Xidian University , 2014 : 31 - 35 . (in Chinese)
李仪芳 , 刘景琳 . 大气PM 2.5 显微图像粒径大小的测量 [J]. 佛山科学技术学院学报(自然科学版) , 2008 , 26 ( 2 ): 68 - 70 .
LI Y F , LIU J L . Measurement for the particle diameter of micrograph of PM 2.5 in atmosphere [J]. Journal of Foshan University (Natural Science Edition) , 2008 , 26 ( 2 ): 68 - 70 . (in Chinese)
SHIN D , KIRMANI A , GOYAL V K , et al . Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors [J]. IEEE Transactions on Computational Imaging , 2015 , 1 ( 2 ): 112 - 125 . doi: 10.1109/tci.2015.2453093 http://dx.doi.org/10.1109/tci.2015.2453093
INCORONATO A , LOCATELLI M , ZAPPA F . Statistical modelling of SPADs for time-of-flight LiDAR [J]. Sensors (Basel, Switzerland) , 2021 , 21 ( 13 ): 4481 . doi: 10.3390/s21134481 http://dx.doi.org/10.3390/s21134481
ZHANG Y B , LI S N , SUN J F , et al . Detection of the near-field targets by non-coaxial underwater single-photon counting lidar [J]. Optik , 2022 , 259 : 169010 . doi: 10.1016/j.ijleo.2022.169010 http://dx.doi.org/10.1016/j.ijleo.2022.169010
魏昊明 , 赵威 , 戴星灿 . 雾和气溶胶前向散射对消光的影响 [J]. 光学 精密工程 , 2018 , 26 ( 6 ): 1354 - 1361 . doi: 10.3788/ope.20182606.1354 http://dx.doi.org/10.3788/ope.20182606.1354
WEI H M , ZHAO W , DAI X C . Influence of fog and aerosol particles' forward-scattering on light extinction [J]. Opt. Precision Eng. , 2018 , 26 ( 6 ): 1354 - 1361 . (in Chinese) . doi: 10.3788/ope.20182606.1354 http://dx.doi.org/10.3788/ope.20182606.1354
聂磊 . 小波变换用于重叠化学信号的分辨研究 [D]. 合肥 : 中国科学技术大学 , 2002 : 23 - 24 .
NIE L . Study on Resolution of Overlapping Chemical Signals by Wavelet Transform [D]. Hefei : University of Science and Technology of China , 2002 : 23 - 24 . (in Chinese)
于康龙 , 秦卫城 , 杨进 , 等 . 超分辨重建图像质量评价算法 [J]. 计算机工程与应用 , 2017 , 53 ( 2 ): 201 - 205 . doi: 10.3778/j.issn.1002-8331.1504-0306 http://dx.doi.org/10.3778/j.issn.1002-8331.1504-0306
YU K L , QIN W CH , YANG J , et al . Image quality assessment method for super-resolution reconstruction image [J]. Computer Engineering and Applications , 2017 , 53 ( 2 ): 201 - 205 . (in Chinese) . doi: 10.3778/j.issn.1002-8331.1504-0306 http://dx.doi.org/10.3778/j.issn.1002-8331.1504-0306
0
Views
975
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution