浏览全部资源
扫码关注微信
1.防灾科技学院 应急管理学院,河北 三河 065201
2.防灾科技学院 信息工程学院,河北 三河 065201
E-mail: yangg202205@163.com
Received:19 May 2022,
Revised:17 June 2022,
Published:25 November 2022
移动端阅览
袁国铭,杨光,王金峰等.由粗到细的多级小波变换水下图像增强[J].光学精密工程,2022,30(22):2939-2951.
YUAN Guoming,YANG Guang,WANG Jinfeng,et al.Coarse-to-fine underwater image enhancement based on multi-level wavelet transform[J].Optics and Precision Engineering,2022,30(22):2939-2951.
袁国铭,杨光,王金峰等.由粗到细的多级小波变换水下图像增强[J].光学精密工程,2022,30(22):2939-2951. DOI: 10.37188/OPE.20223022.2939.
YUAN Guoming,YANG Guang,WANG Jinfeng,et al.Coarse-to-fine underwater image enhancement based on multi-level wavelet transform[J].Optics and Precision Engineering,2022,30(22):2939-2951. DOI: 10.37188/OPE.20223022.2939.
为实现水下降质图像的颜色校正和细节增强,提出了由粗到细的多级小波变换水下图像增强方法。首先,通过多级小波变换将水下图像分解为低频图像和一系列高频图像;随后,提出了由粗到细的多级小波变换水下图像增强网络,它包含基于多级小波变换的图像增强子网络和二阶龙格库塔模块构建的细化子网络。基于多级小波变换的图像增强子网络用于估计水下图像增强的初步结果,它包括低频分支和高频分支。低频分支校正低频图像的颜色信息,它将颜色校正问题看作隐式的类型转化问题,并将类型转化中常用的实例归一化和位置归一化用于低频分支的颜色校正中。高频分支为了适应低频分支的操作,如实地增强高频图像的边缘和细节,联合低频分支处理时的信息以及高频图像,计算增强高频细节的掩模;逐步上采样掩模,并将其与各级小波变换获取的高频图像相乘,以增强细节。实施逆小波变换,获得初步增强的水下图像;最后,设计基于二阶龙格库塔模块的细化子网络,对初步增强的结果进一步细化。实验结果表明:在合成和真实水下图像上,本文算法较已有的水下图像增强算法,具有更好的增强效果,PSNR值的提升幅度达9%。满足水下视觉任务的颜色校正、细节增强、清晰化等要求。
To correct the color distortion and enhance the details of degraded underwater image, this paper proposes a coarse-to-fine underwater image enhancement method based on multi-level wavelet transform. Firstly, a raw underwater image is decomposed into a low-frequency image and a series of high-frequency images based on the wavelet transform. Secondly, a two-stage underwater enhancement network is proposed, which includes a multi-level wavelet transform sub-network and a refinement sub-network with the proposed second-order Runge-Kutta block. The multi-level wavelet transform sub-network, which estimates preliminary result, contains a low-frequency and a high-frequency branch. Specifically, the low-frequency branch treats the color correction problem as the implicit style transfer problem and introduces the instance normalization and the position normalization into the branch. To ensure an accurate reconstruction, when manipulating low-frequency information, the high-frequency branch calculates the enhanced mask according to the information from both low- and high-frequency images and implements the enhancement by multiplying the progressive up-sampling enhanced mask with the high-frequency images. We implemented the inverse wavelet transform and obtain the preliminary results. Finally, the refinement network was designed to further optimize the preliminary results with the proposed second-order Runge-Kutta block. Experimental results demonstrated that the proposed method outperformed the existing methods in enhancement effect on both synthetic and real images, whilst the Peak Signal-to-Noise Ratio (PSNR) improved by 9%. The proposed method also meets the requirement of underwater vision tasks, such as color correction, details enhancement, and clarity.
舒岳阶 , 吴俊 , 周远航 , 等 . 水工物理模型水下高精度超声水位测量 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 2027 - 2034 . doi: 10.37188/OPE.20202809.2027 http://dx.doi.org/10.37188/OPE.20202809.2027
SHU Y J , WU J , ZHOU Y H , et al . Underwater high-precision ultrasonic water level measurement method for hydraulic physical model [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2027 - 2034 . (in Chinese) . doi: 10.37188/OPE.20202809.2027 http://dx.doi.org/10.37188/OPE.20202809.2027
褚金奎 , 张培奇 , 成昊远 , 等 . 基于特定偏振态成像的水下图像去散射方法 [J]. 光学 精密工程 , 2021 , 29 ( 5 ): 1207 - 1215 . doi: 10.37188/OPE.20212905.1207 http://dx.doi.org/10.37188/OPE.20212905.1207
CHU J K , ZHANG P Q , CHENG H Y , et al . De-scattering method of underwater image based on imaging of specific polarization state [J]. Opt. Precision Eng. , 2021 , 29 ( 5 ): 1207 - 1215 . (in Chinese) . doi: 10.37188/OPE.20212905.1207 http://dx.doi.org/10.37188/OPE.20212905.1207
高文 , 肖海峰 . 基于动态双稳随机共振的低照度彩色图像增强 [J]. 液晶与显示 , 2021 , 36 ( 6 ): 861 - 868 . doi: 10.37188/CJLCD.2020-0283 http://dx.doi.org/10.37188/CJLCD.2020-0283
GAO W , XIAO H F . Low illumination color image enhancement based on dynamic bistable stochastic resonance [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 6 ): 861 - 868 . (in Chinese) . doi: 10.37188/CJLCD.2020-0283 http://dx.doi.org/10.37188/CJLCD.2020-0283
邓箴 , 王一斌 , 刘立波 . 视觉注意机制的注意残差稠密神经网络弱光照图像增强 [J]. 液晶与显示 , 2021 , 36 ( 11 ): 1463 - 1473 . doi: 10.37188/CJLCD.2021-0098 http://dx.doi.org/10.37188/CJLCD.2021-0098
DENG ZH , WANG Y B , LIU L B . Attentive residual dense network of visual attention mechanism for weakly illuminated image enhancement [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 11 ): 1463 - 1473 . (in Chinese) . doi: 10.37188/CJLCD.2021-0098 http://dx.doi.org/10.37188/CJLCD.2021-0098
王德兴 , 王越 , 袁红春 . 基于Inception-Residual和生成对抗网络的水下图像增强 [J]. 液晶与显示 , 2021 , 36 ( 11 ): 1474 - 1485 . doi: 10.37188/CJLCD.2021-0058 http://dx.doi.org/10.37188/CJLCD.2021-0058
WANG D X , WANG Y , YUAN H CH . Underwater image enhancement based on Inception-Residual and generative adversarial network [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 11 ): 1474 - 1485 . (in Chinese) . doi: 10.37188/CJLCD.2021-0058 http://dx.doi.org/10.37188/CJLCD.2021-0058
Jr DREWS P L J , NASCIMENTO E R , BOTELHO S S C , et al . Underwater depth estimation and image restoration based on single images [J]. IEEE Computer Graphics and Applications , 2016 , 36 ( 2 ): 24 - 35 . doi: 10.1109/mcg.2016.26 http://dx.doi.org/10.1109/mcg.2016.26
ASADI S , AZARI F , HASSANPOUR H . Improving dark channel prior for single image dehazing [J]. International Journal of Engineering , 2015 , 28 ( 6 (C)): 880 - 887 . doi: 10.5829/idosi.ije.2015.28.06c.08 http://dx.doi.org/10.5829/idosi.ije.2015.28.06c.08
LI X J , HOU G J , TAN L , et al . A hybrid framework for underwater image enhancement [J]. IEEE Access , 8 : 197448 - 197462 .
SONG H J , CHANG L B , CHEN Z W , et al . Enhancement-registration-homogenization (ERH): a comprehensive underwater visual reconstruction paradigm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 10 ): 6953 - 6967 . doi: 10.1109/tpami.2022.3202318 http://dx.doi.org/10.1109/tpami.2022.3202318
HU X R . Underwater image enhancement method based on wavelet transform and retinex [C]. 2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). Yibin , China . IEEE , 2021 : 86 - 90 .
ANWAR S , LI C , PORIKLI F , et al . Deep underwater image enhancement [Z/OL]. arXiv : 1807 .03528, 2018 . Link: https://arxiv.org/abs/1807.03528 https://arxiv.org/abs/1807.03528 .
WANG N , ZHOU Y , HAN F , et al . UWGAN: Underwater GAN for real-world underwater color restoration and dehazing [Z/OL]. arXiv : 1912 .10269, 2019 . Link: https://arxiv.org/abs/1912.10269 https://arxiv.org/abs/1912.10269
ISLAM M J , XIA Y Y , SATTAR J . Fast underwater image enhancement for improved visual perception [J]. IEEE Robotics and Automation Letters , 2020 , 5 ( 2 ): 3227 - 3234 . doi: 10.1109/lra.2020.2974710 http://dx.doi.org/10.1109/lra.2020.2974710
HE X Y , MO Z T , WANG P S , et al . ODE-inspired network design for single image super-resolution [C]。 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach , CA, USA . IEEE , 2019 : 1732 - 1741 . doi: 10.1109/cvpr.2019.00183 http://dx.doi.org/10.1109/cvpr.2019.00183
MA Z Y , OH C . A wavelet-based dual-stream network for underwater image enhancement [C]. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing . Singapore, Singapore . IEEE , 2022 : 2769 - 2773 .
SUN K C , MENG F , TIAN Y B . Multi-level wavelet-based network embedded with edge enhancement information for underwater image enhancement [J]. Journal of Marine Science and Engineering , 2022 , 10 ( 7 ): 884 .
ZAMIR S W , ARORA A , KHAN S , et al . Multi-stage progressive image restoration [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville , TN , USA . IEEE , 2021 : 14816 - 14826 . doi: 10.1109/cvpr46437.2021.01458 http://dx.doi.org/10.1109/cvpr46437.2021.01458
ZHENG J X , QIU T W , CHEN L H , et al . Image semantic segmentation based on joint normalization [C]. Proceedings of the 11th International Conference on Computer Engineering and Networks , 2022 : 121 - 127 .
ARORA G , JOSHI V , GARKI I S . 9 Developments in Runge-Kutta Method to Solve Ordinary Differential Equations [M]. Recent Advances in Mathematics for Engineering . CRC Press , 2020 : 193 - 202 .
LI C , GUO C , REN W , et al . An underwater image enhancement benchmark dataset and beyond [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2019 : 2019 Nov28.
李莉 , 王新强 , 银珊 . 基于衰减补偿与直方图拉伸的水下图像增强算法 [J]. 计算机工程 , 2022 , 48 ( 6 ): 222 - 227 .
LI L , WANG X Q , YIN SH . Underwater image enhancement algorithm based on attenuation compensation and histogram stretching [J]. Computer Engineering , 2022 , 48 ( 6 ): 222 - 227 . (in Chinese)
0
Views
584
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution