浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
Received:29 September 2022,
Revised:08 November 2022,
Published:10 December 2022
移动端阅览
杨乐强,王建立,姚凯男等.基于GPU的961单元自适应光学系统波前处理器设计及其动态性能[J].光学精密工程,2022,30(23):3004-3012.
YANG Leqiang,WANG Jianli,YAO Kainan,et al.Design and dynamic performance of wavefront processor for 961 element adaptive optics system based on GPU[J].Optics and Precision Engineering,2022,30(23):3004-3012.
杨乐强,王建立,姚凯男等.基于GPU的961单元自适应光学系统波前处理器设计及其动态性能[J].光学精密工程,2022,30(23):3004-3012. DOI: 10.37188/OPE.20223023.3004.
YANG Leqiang,WANG Jianli,YAO Kainan,et al.Design and dynamic performance of wavefront processor for 961 element adaptive optics system based on GPU[J].Optics and Precision Engineering,2022,30(23):3004-3012. DOI: 10.37188/OPE.20223023.3004.
为了满足4 m级地基大口径光学望远镜千单元自适应光学系统的波前处理规模、速度以及控制带宽要求,研究了基于GPU的千单元级自适应光学系统高速波前处理器。介绍了自适应光学系统波前处理方法,并详细论述了基于GPU的波前处理架构的实现与优化方法。最后,通过湍流模拟器进行桌面模拟实验,得到961单元自适应光学系统的动态性能。实验结果表明:基于GPU的961单元自适应光学系统在采样频率为1 500 Hz时,系统0 dB残余误差抑制带宽能够达到100 Hz,满足4 m级地基大口径光学望远镜自适应光学系统的应用需求。
In order to meet the wavefront processing scale, speed, and control bandwidth requirements of the thousand-element adaptive optics system of the 4-m-level ground-based large-aperture optical telescope, a GPU-based high-speed wavefront processor for the adaptive optics system is examined. The wavefront processing method of the adaptive optics system is introduced, and the realization and optimization methods of the GPU-based wavefront processing architecture are discussed. A testbed simulation experiment is performed using a turbulence simulator, in order to analyze the dynamic performance of the 961-unit adaptive optics system. The experimental results show that when the sampling frequency of the 961-unit adaptive optics system is 1 500 Hz, the 0 dB residual error rejection bandwidth of the system can reach 100 Hz. This rejection bandwidth value meets the application requirements of the 4-m optical telescope adaptive optics system.
王建立 , 陈涛 , 张景旭 , 等 . 地基高分辨率光电成像望远镜总体需求及关键技术分析 [J]. 光学 精密工程 , 2008 , 16 ( 5 ): 2 - 16 .
WANG J L , CHEN T , ZHANG J X , et al . General requirements and key technologies for the ground-based high resolution EO imaging telescope [J]. Opt. Precision Eng. , 2008 , 16 ( 5 ): 2 - 16 . (in Chinese)
林旭东 , 刘欣悦 , 王建立 , 等 . 961单元变形镜研制及性能测试 [J]. 光学学报 , 2013 , 33 ( 6 ): 9 - 14 . doi: 10.3788/AOS201333.0601001 http://dx.doi.org/10.3788/AOS201333.0601001
LIN X D , LIU X Y , WANG J L , et al . Development and performance test of the 961-element deformable mirror [J]. Acta Optica Sinica , 2013 , 33 ( 6 ): 9 - 14 . (in Chinese) . doi: 10.3788/AOS201333.0601001 http://dx.doi.org/10.3788/AOS201333.0601001
MOCCI J , BUSATO F , BOMBIERI N , et al . Efficient implementation of the Shack-Hartmann centroid extraction for edge computing [J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision , 2020 , 37 ( 10 ): 1548 - 1556 .
贾建禄 , 赵金宇 , 王建立 , 等 . 基于FPGA的自适应光学波前处理算法 [J]. 光学 精密工程 , 2017 , 25 ( 10 ): 2580 - 2583 . doi: 10.3788/OPE.20172510.2580 http://dx.doi.org/10.3788/OPE.20172510.2580
JIA J L , ZHAO J Y , WANG J L , et al . Adaptive optical wave-front processing algorithm based on FPGA [J]. Optics and Precision Engineering , 2017 , 25 ( 10 ): 2580 - 2583 . (in Chinese) . doi: 10.3788/OPE.20172510.2580 http://dx.doi.org/10.3788/OPE.20172510.2580
贾建禄 , 王建立 , 赵金宇 , 等 . 基于FPGA的自适应光学系统波前处理机 [J]. 光学 精密工程 , 2011 , 19 ( 8 ): 1716 - 1722 .
JIA J L , WANG J L , ZHAO J Y , et al . Adaptive optical wave-front processor based on FPGA [J]. Optics and Precision Engineering , 2011 , 19 ( 8 ): 1716 - 1722 . (in Chinese)
陈善球 . 自适应光学高性能实时计算技术研究 [D]. 成都 : 电子科技大学 , 2016 .
CHEN SH Q . Research on High Performance and Real-time Computing for Adaptive Optics [D]. Chengdu : University of Electronic Science and Technology of China , 2016 . (in Chinese)
王建立 , 董玉磊 , 姚凯男 , 等 . 349单元自适应光学波前处理器 [J]. 光学 精密工程 , 2018 , 26 ( 5 ): 1007 - 1013 .
WANG J L , DONG Y L , YAO K N , et al . Three hundred and fourty-nine unit adaptive optical wavefront processor [J]. Opt. Precision Eng. , 2018 , 26 ( 5 ): 1007 - 1013 . (in Chinese)
KONG F P , POLO M C , LAMBERT A . Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing [J]. Applied Optics , 2017 , 56 ( 23 ): 6466 - 6475 .
BENDEK E A , HART M , POWELL K B , et al . Status of the 6 .5m MMT Telescope laser adaptive optics system[C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7736 , Adaptive Optics Systems II, San Diego, California, USA . 2010, 7736 : 268 - 279 .
DUNCAN T S , VOAS J K , EAGER R J , et al . Low-latency adaptive optical system processing electronics [C]. Astronomical Telescopes and Instrumentation. Proc SPIE 4839 , Adaptive Optical System Technologies II , Waikoloa , Hawai'i, USA . 2003 , 4839 : 923 - 934 .
ZHANG H , LJUSIC Z , HOVEY G , et al . A high-performance FPGA platform for adaptive optics real-time control [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 8447 , Adaptive Optics Systems III, Amsterdam, Netherlands . 2012 , 8447 : 906 - 915 .
王春鸿 . 61单元自适应光学系统实时波前处理技术研究 [D]. 成都 : 电子科技大学 , 2008 . doi: 10.7666/d.D308245 http://dx.doi.org/10.7666/d.D308245
WANG CH H . Research on Real-time Wavefront Processing Technology of 61 -unit Adaptive Optical System [D]. Chengdu : University of Electronic Science and Technology of China , 2008 . (in Chinese) . doi: 10.7666/d.D308245 http://dx.doi.org/10.7666/d.D308245
RAO C H , ZHU L , RAO X J , et al . Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory [J]. The Astrophysical Journal Letters , 2016 , 833 ( 2 ): 210 .
KONG L , ZHU L , ZHANG L Q , et al . Real-time controller based on FPGA and DSP for solar ground layer adaptive optics prototype system at 1-m NVST [J]. IEEE Photonics Journal , 2017 , 9 ( 2 ): 1 - 11 . doi: 10.1109/JPHOT.2017.2662326 http://dx.doi.org/10.1109/JPHOT.2017.2662326
LI D Y , et al . Wavefront processor for liquid crystal adaptive optics system based on Graphics Processing Unit [J]. Optics Communications , 2014 , 316 : 211 - 216 .
BERNARD J , PERRET D , SEVIN A , et al . Design and performance of a scalable GPU-based AO RTC prototype [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10703 , Adaptive Optics Systems VI, Austin, Texas, USA . 2018 , 10703 : 1171 - 1181 .
GRATADOUR D , MORRIS T , BIASI R , et al . Prototyping AO RTC using emerging high performance computing technologies with the Green Flash project [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10703 , Adaptive Optics Systems VI, Austin, Texas, USA . 2018 , 10703 : 404 - 418 .
BASDEN A G , MYERS R M . The Durham adaptive optics real-time controller: capability and Extremely Large Telescope suitability [J]. Monthly Notices of the Royal Astronomical Society , 2012 , 424 ( 2 ): 1483 - 1494 .
BITENC U , BASDEN A , DIPPER N , et al . Durham AO real-time controller (DARC) running on graphics processing units (GPUs) [ C]. Adaptive Optics for Extremely Large Telescopes 4–Conference Proceedings . 2015 , 1 ( 1 ).
PERRET D , LAIN M , BERNARD J , et al . Bridging FPGA and GPU technologies for AO real-time control [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9909 , Adaptive Optics Systems V, Edinburgh, United Kingdom . 2016 , 9909 : 1364 - 1374 .
JENKINS D R , BASDEN A G , MYERS R M , et al . An ELT scale MCAO real-time control prototype using Xeon Phi technologies [C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10703 , Adaptive Optics Systems VI, Austin, Texas, USA . 2018 , 10703 : 419 - 425 .
FERREIRA F , GRATADOUR D , SEVIN A , et al . COMPASS: an efficient GPU-based simulation software for adaptive optics systems [C]. 2018 International Conference on High Performance Computing & Simulation (HPCS). Orleans , France . IEEE , 2018 : 180 - 187 .
李新阳 , 姜文汉 . 自适应光学控制系统的有效带宽分析 [J]. 光学学报 , 1997 , 17 ( 12 ): 1697 - 1702 . doi: 10.3321/j.issn:0253-2239.1997.12.020 http://dx.doi.org/10.3321/j.issn:0253-2239.1997.12.020
LI X Y , JIANG W H . Effective bandwidth analysis of adaptive optics control system [J]. Acta Optica Sinica , 1997 , 17 ( 12 ): 1697 - 1702 . (in Chinese) . doi: 10.3321/j.issn:0253-2239.1997.12.020 http://dx.doi.org/10.3321/j.issn:0253-2239.1997.12.020
0
Views
1279
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution