浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学 材料与光电研究中心,北京 100049
3.吉林大学 电子科学与工程学院,吉林 长春 130012
4.鹏城实验室,广东 深圳 518055
Received:06 June 2022,
Revised:12 July 2022,
Published:10 January 2023
移动端阅览
赵树华,王玉冰,张明时等.调频连续波激光雷达及数据采集信号链噪声分析[J].光学精密工程,2023,31(01):78-88.
ZHAO Shuhua,WANG Yubing,ZHANG Mingshi,et al.FMCW Lidar and noise analysis of data acquisition signal chain[J].Optics and Precision Engineering,2023,31(01):78-88.
赵树华,王玉冰,张明时等.调频连续波激光雷达及数据采集信号链噪声分析[J].光学精密工程,2023,31(01):78-88. DOI: 10.37188/OPE.20233101.0078.
ZHAO Shuhua,WANG Yubing,ZHANG Mingshi,et al.FMCW Lidar and noise analysis of data acquisition signal chain[J].Optics and Precision Engineering,2023,31(01):78-88. DOI: 10.37188/OPE.20233101.0078.
在调频连续波激光雷达中,用于中频信号采集的模拟-数字采集模块是其关键组件,信噪比、信纳比、无杂散动态范围等参数是衡量该数据采集信号链交流特性的重要指标,直接决定着调频连续波激光雷达的探测范围和测距精度等性能。设计了用于调频连续波激光雷达的中频信号采集模块,获得49.13 dB的信噪比和48.90 dB的信纳比;然后研究了其噪声特性,获得系统的主要噪声来源为采样时钟的相位噪声,并且通过引入数字滤波器将信噪比和信纳比分别提升11.38 dB和11.32 dB,理论上激光雷达的探测范围提高3.7倍。可通过采用专业时钟芯片降低噪声,经计算可将信噪比提高8.65 dB;最后,搭建了光学相控阵调频连续波激光雷达系统,验证了数据采样模块的有效性,完成了40 m距离的探测,最大测量误差为7.7 cm,最大探测范围为133.67 m。
The analog/digital acquisition module for intermediate frequency (IF) signal acquisition is the fundamental component of frequency-modulated continuous-wave (FMCW) lidar. Parameters such as the signal-to-noise ratio (SNR), signal-to-noise and distortion ratio (SINAD), and spurious-free dynamic range are major indicators of the alternating current characteristics of the data acquisition signal chain and directly determine the key indicators of FMCW lidar, including the detection range and ranging accuracy. First, this study designed an IF signal acquisition module for FMCW lidar, where the obtained SNR and SINAD were 49.13 dB and 48.90 dB, respectively. Second, the study investigated the noise characteristics of FMCW lidar, identified the system noise source as the phase noise of the sampling clock, and improved the SNR and SINAD by 11.38 dB and 11.32 dB, respectively, by introducing digital filters, which theoretically increased the detection range of FMCW lidar by 3.7 times. System noise can be reduced by using cosmetic clock chips, and the SNR can be improved by 8.65 dB. Finally, an optical phased-array FMCW lidar system was built to verify the effectiveness of the data sampling module and to conduct 40-m range distance detection under a maximum measurement error of 7.7 cm. The study determined that the FMCW lidar’s maximum detection range was 133.67 m.
ZIMMERMANN M , GESTWA M , KÖNIG C , et al . First results of LiDAR-aided helicopter approaches during NATO DVE-mitigation trials [J]. CEAS Aeronautical Journal , 2019 , 10 ( 3 ): 859 - 874 . doi: 10.1007/s13272-018-0354-8 http://dx.doi.org/10.1007/s13272-018-0354-8
孔晓娟 , 刘秉义 , 杨倩 , 等 . 船载激光雷达测量水体光学参数的仿真模拟研究 [J]. 红外与激光工程 , 2020 , 49 ( 02 ): 185 - 192 . doi: 10.3788/irla202049.0205010 http://dx.doi.org/10.3788/irla202049.0205010
KONG X , LIU B , YANG Q , et al . Simulation of water optical property measurement with shipborne lidar [J]. Infrared and Laser engineering , 2020 , 49 ( 02 ): 185 - 192 . (in Chinese) . doi: 10.3788/irla202049.0205010 http://dx.doi.org/10.3788/irla202049.0205010
郭明 , 孙梦溪 , 黄明 , 等 . 融合激光雷达与无人机的特大钢结构高精度测量 [J]. 光学 精密工程 , 2021 , 29 ( 5 ): 989 - 998 . doi: 10.37188/OPE.20212905.0989 http://dx.doi.org/10.37188/OPE.20212905.0989
GUO M , SUN M X , HUANG M , et al . High-precision measurement of steel structure based on LiDAR and UAV [J]. Opt. Precision Eng. , 2021 , 29 ( 5 ): 989 - 998 . (in Chinese) . doi: 10.37188/OPE.20212905.0989 http://dx.doi.org/10.37188/OPE.20212905.0989
赵传 , 郭海涛 , 王优扬 , 等 . 利用邻域方向分布的机载激光雷达点云建筑物外轮廓提取 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 374 - 387 . doi: 10.37188/OPE.20212902.0374 http://dx.doi.org/10.37188/OPE.20212902.0374
ZHAO CH , GUO H T , WANG Y Y , et al . Building outer boundary extraction from ALS point clouds using neighbor point direction distribution [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 374 - 387 . (in Chinese) . doi: 10.37188/OPE.20212902.0374 http://dx.doi.org/10.37188/OPE.20212902.0374
刘群 , 刘崇 , 朱小磊 , 等 . 星载海洋激光雷达最佳工作波长分析 [J]. 中国光学 , 2020 , 13 ( 1 ): 148 - 155 . doi: 10.3788/co.20201301.0148 http://dx.doi.org/10.3788/co.20201301.0148
LIU Q , LIU C , ZHU X L , et al . Analysis of the optimal operating wavelength of spaceborne oceanic lidar [J]. Chinese Optics , 2020 , 13 ( 1 ): 148 - 155 . (in Chinese) . doi: 10.3788/co.20201301.0148 http://dx.doi.org/10.3788/co.20201301.0148
SONG S J , CHEN Y W , HU H J , et al . The feasibility study of wavelength selection of multi-spectral LIDAR for autonomous driving [J]. Journal of Infrared and Millimeter Waves , 2020 , 39 ( 1 ): 86 - 91 .
伍锡如 , 薛其威 . 基于激光雷达的无人驾驶系统三维车辆检测 [J]. 光学 精密工程 , 2022 , 30 ( 4 ): 489 - 497 . doi: 10.37188/OPE.20223004.0489 http://dx.doi.org/10.37188/OPE.20223004.0489
WU X R , XUE Q W . 3D vehicle detection for unmanned driving systerm based on lidar [J]. Opt. Precision Eng. , 2022 , 30 ( 4 ): 489 - 497 . (in Chinese) . doi: 10.37188/OPE.20223004.0489 http://dx.doi.org/10.37188/OPE.20223004.0489
宋召奇 , 朱精果 , 解天鹏 , 等 . 安防激光雷达研究进展 [J]. 激光与光电子学进展 , 2021 , 58 ( 1 ): 28 - 42 . doi: 10.3788/lop202158.0100002 http://dx.doi.org/10.3788/lop202158.0100002
SONG ZH Q , ZHU J G , XIE T P , et al . Research progress on security LiDAR [J]. Laser & Optoelectronics Progress , 2021 , 58 ( 1 ): 28 - 42 . (in Chinese) . doi: 10.3788/lop202158.0100002 http://dx.doi.org/10.3788/lop202158.0100002
SHI P P , LU L J , LIU C X , et al . Optical FMCW signal generation using a silicon dual-parallel Mach-Zehnder modulator [J]. IEEE Photonics Technology Letters , 2021 , 33 ( 6 ): 301 - 304 . doi: 10.1109/lpt.2021.3057986 http://dx.doi.org/10.1109/lpt.2021.3057986
ZHANG X S , KWON K , HENRIKSSON J , et al . A large-scale microelectromechanical-systems-based silicon photonics LiDAR [J]. Nature , 2022 , 603 ( 7900 ): 253 - 258 . doi: 10.1038/s41586-022-04415-8 http://dx.doi.org/10.1038/s41586-022-04415-8
ROGERS C , PIGGOTT A Y , THOMSON D J , et al . A universal 3D imaging sensor on a silicon photonics platform [J]. Nature , 2021 , 590 ( 7845 ): 256 - 261 . doi: 10.1038/s41586-021-03259-y http://dx.doi.org/10.1038/s41586-021-03259-y
POULTON C V , YAACOBI A , COLE D B , et al . Coherent solid-state LIDAR with silicon photonic optical phased arrays [J]. Optics Letters , 2017 , 42 ( 20 ): 4091 - 4094 . doi: 10.1364/ol.42.004091 http://dx.doi.org/10.1364/ol.42.004091
ZHANG X S , POULS J , WU M C . Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR [J]. Optics Express , 2019 , 27 ( 7 ): 9965 - 9974 . doi: 10.1364/oe.27.009965 http://dx.doi.org/10.1364/oe.27.009965
RIEMENSBERGER J , LUKASHCHUK A , KARPOV M , et al . Massively parallel coherent laser ranging using a soliton microcomb [J]. Nature , 2020 , 581 ( 7807 ): 164 - 170 . doi: 10.1038/s41586-020-2239-3 http://dx.doi.org/10.1038/s41586-020-2239-3
SANG Y , WANG Y , GUO R . Analysis of SNR Differences Between Wideband and Narrowband Radar [J]. Modern Radar , 2013 , 35 ( 10 ): 27 .
EL-SHENNAWY M , AL-QUDSI B , JORAM N , et al . Fractional-N PLL phase noise effects on baseband signal-to-noise ratio in FMCW radars [C]. 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). 1215,2017 , Giardini Naxos - Taormina, Italy. IEEE , 2017 : 77 - 80 . doi: 10.1109/prime.2017.7974111 http://dx.doi.org/10.1109/prime.2017.7974111
戚昊琛 , 张鉴 , 高伟清 , 等 . FMCW雷达测距系统的中频信号处理电路设计 [J]. 仪表技术与传感器 , 2015 ( 8 ): 29 - 32 . doi: 10.3969/j.issn.1002-1841.2015.08.010 http://dx.doi.org/10.3969/j.issn.1002-1841.2015.08.010
QI H C , ZHANG J , GAO W Q , et al . Design of IF signal processing circuit for FMCW radar ranging system [J]. Instrument Technique and Sensor , 2015 ( 8 ): 29 - 32 . (in Chinese) . doi: 10.3969/j.issn.1002-1841.2015.08.010 http://dx.doi.org/10.3969/j.issn.1002-1841.2015.08.010
TANG L W , JIA H X , SHAO S , et al . Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity [J]. Photonics Research , 2021 , 9 ( 10 ): 1948 - 1957 . doi: 10.1364/prj.428837 http://dx.doi.org/10.1364/prj.428837
许蒙蒙 , 周煜 , 孙建锋 , 等 . 基于相位调制器的宽带窄线宽的线性调频激光源的产生 [J]. 红外与激光工程 , 2020 , 49 ( 2 ): 138 - 144 . doi: 10.3788/irla202049.0205004 http://dx.doi.org/10.3788/irla202049.0205004
XU M M , ZHOU Y , SUN J F , et al . Generation of linear frequency modulation laser source with broadband narrow linewidth using optical phase modulator [J]. Infrared and Laser Engineering , 2020 , 49 ( 2 ): 138 - 144 . (in Chinese) . doi: 10.3788/irla202049.0205004 http://dx.doi.org/10.3788/irla202049.0205004
0
Views
1260
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution