浏览全部资源
扫码关注微信
1.南京航空航天大学 机电学院,江苏 南京 210016
2.北京航天计量测试技术研究所,北京 100076
Received:29 June 2022,
Revised:02 August 2022,
Published:10 February 2023
移动端阅览
高凯元,刘雷,崔海华等.基于小波变换的精密测量点云多尺度分解[J].光学精密工程,2023,31(03):340-351.
GAO Kaiyuan,LIU Lei,CUI Haihua,et al.Multi-scale decomposition of point cloud data based on wavelet transform[J].Optics and Precision Engineering,2023,31(03):340-351.
高凯元,刘雷,崔海华等.基于小波变换的精密测量点云多尺度分解[J].光学精密工程,2023,31(03):340-351. DOI: 10.37188/OPE.20233103.0340.
GAO Kaiyuan,LIU Lei,CUI Haihua,et al.Multi-scale decomposition of point cloud data based on wavelet transform[J].Optics and Precision Engineering,2023,31(03):340-351. DOI: 10.37188/OPE.20233103.0340.
为了减小多源跨尺度点云数据尺度与数据量上的差异,提出了一种基于小波变换的点云多尺度分解方法。对细节丰富的小尺度点云数据进行多尺度分解,以及尺度分解在跨尺度点云数据配准中的应用进行研究。首先,对小尺度点云进行栅格建模,建立全局点云二值表达函数。根据离散小波变换理论,对栅格点云进行多次的三维小波分解,利用小波尺度函数的低通特性,保留低频信息来获取原始小尺度点云的近似尺度数据。然后,基于面维数和差体维数差表征与原始数据的相似度,确定有效的小波分解级数。最后,将各级分解得到的点云数据与大尺度点云数据进行精确配准,并将配准关系应用于原始点云,提高跨尺度点云的配准精度。实验结果表明:本文提出的多尺度分解方法能够对数据进行有效分解,应用于某航空发动机叶片多尺度测量中,将显微测量的局部气膜孔小尺度点云数据与整体叶片结构光数据配准,配准精度提升了61.36%。该分解方法应用于叶片边缘与栅格零件多尺度测量中,配准精度分别提升了48.59%,43.86%。所提的点云多尺度分解方法能够有效分解小尺度点云数据,大幅提升跨尺度数据的配准精度。
To reduce the differences between the data scales and volume of multi-source cross-scale point cloud data, this study proposes a multi-scale decomposition method of point cloud data based on wavelet transform. This study examines the multi-scale decomposition of small-scale point cloud data with considerable attention and the application of scale decomposition in cross-scale point cloud data registration. First, the small-scale point cloud is grid modeled, and the global point cloud binary expression function is established. Subsequently, according to the theory of discrete wavelet transformation, three-dimensional wavelet decomposition of the grid point cloud is performed several times, and the low-pass characteristics of the wavelet scale function are used to retain the low-frequency information to obtain the approximate scale data of the original small-scale point cloud. The similarity with the original data is then characterized based on the surface dimension and the difference in body dimension, and the effective wavelet decomposition series is determined. Finally, the point cloud data obtained by decomposition at various levels are accurately registered with the large-scale point cloud data, and the registration relationship is applied to the original point cloud to increase the registration accuracy of the cross-scale point cloud data. The experimental results show that the multi-scale decomposition method proposed in this paper can effectively decompose the data. When applied to the multi-scale measurement of an aero-engine blade, the registration accuracy of the local cooling holes small-scale point cloud data and the overall blade structure light data of micrometry increased by 61.36%. The proposed decomposition method is applied to the multi-scale measurement of blade edge and grid parts, and the registration accuracy is increased by 48.59% and 43.86%, respectively. The proposed multi-scale decomposition method of the point cloud can effectively decompose small-scale point cloud data, and ultimately improve the registration accuracy of cross-scale data.
郭东明 . 高性能精密制造 [J]. 中国机械工程 , 2018 , 29 ( 7 ): 757 - 765 . doi: 10.3969/j.issn.1004-132X.2018.07.001 http://dx.doi.org/10.3969/j.issn.1004-132X.2018.07.001
GUO D M . High-performance precision manufacturing [J]. China Mechanical Engineering , 2018 , 29 ( 7 ): 757 - 765 . (in Chinese) . doi: 10.3969/j.issn.1004-132X.2018.07.001 http://dx.doi.org/10.3969/j.issn.1004-132X.2018.07.001
王呈 , 刘涛 , 穆轩 , 等 . 航空发动机叶片气膜孔测量技术研究 [J]. 计测技术 , 2012 , 32 ( 5 ): 27 - 30 . doi: 10.3969/j.issn.1674-5795.2012.05.007 http://dx.doi.org/10.3969/j.issn.1674-5795.2012.05.007
WANG CH , LIU T , MU X , et al . Research on aero engine blade film hole measuring technology [J]. Metrology & Measurement Technology , 2012 , 32 ( 5 ): 27 - 30 . (in Chinese) . doi: 10.3969/j.issn.1674-5795.2012.05.007 http://dx.doi.org/10.3969/j.issn.1674-5795.2012.05.007
KONG L , PENG X , CHEN Y , et al . Multi-sensor measurement and data fusion technology for manufacturing process monitoring: a literature review [J] International Journal of Extreme Manufacturing , 2020 , 2 ( 02 ): 5 - 31 . doi: 10.1088/2631-7990/ab7ae6 http://dx.doi.org/10.1088/2631-7990/ab7ae6
王陈 , 孟宪昱 , 于瀛洁 , 等 . 三维微纳米台阶高精度光学显微测量量化表征 [J]. 光学 精密工程 , 2022 , 30 ( 6 ): 651 - 658 . doi: 10.37188/OPE.20223006.0651 http://dx.doi.org/10.37188/OPE.20223006.0651
WANG CH , MENG X Y , YU Y J , et al . High-accuracy characterization of areal micro-nano steps measured with optical microscopes [J]. Optics and Precision Engineering , 2022 , 30 ( 6 ): 651 - 658 . (in Chinese) . doi: 10.37188/OPE.20223006.0651 http://dx.doi.org/10.37188/OPE.20223006.0651
何宝凤 , 丁思源 , 魏翠娥 , 等 . 三维表面粗糙度测量方法综述 [J]. 光学 精密工程 , 2019 , 27 ( 1 ): 78 - 93 . doi: 10.3788/ope.20192701.0078 http://dx.doi.org/10.3788/ope.20192701.0078
HE B F , DING S Y , WEI C E , et al . Review of measurement methods for areal surface roughness [J]. Optics and Precision Engineering , 2019 , 27 ( 1 ): 78 - 93 . (in Chinese) . doi: 10.3788/ope.20192701.0078 http://dx.doi.org/10.3788/ope.20192701.0078
莫程威 , 崔海华 , 程筱胜 , 等 . 基于分形维数表征的跨尺度拼接方法 [J]. 光学学报 , 2018 , 38 ( 12 ): 205 - 213 . doi: 10.3788/aos201838.1215001 http://dx.doi.org/10.3788/aos201838.1215001
MO CH W , CUI H H , CHENG X SH , et al . Cross-scale registration method based on fractal dimension characterization [J]. Acta Optica Sinica , 2018 , 38 ( 12 ): 205 - 213 . (in Chinese) . doi: 10.3788/aos201838.1215001 http://dx.doi.org/10.3788/aos201838.1215001
喻永前 . 基于点云数据的特征约束精简与三维重构技术研究 [D]. 上海 : 上海大学 , 2021 .
YU Y Q . Research on Feature Constraint Simplification and 3 D Reconstruction Technology Based on Point Cloud Data [D]. Shanghai : Shanghai University , 2021 . (in Chinese)
李海鹏 , 徐丹 , 付宇婷 , 等 . 基于FPFH特征提取的散乱点云精简算法 [J]. 图学学报 , 2022 , 43 ( 4 ): 599 - 607 .
LI H P , XU D , FU Y T , et al . A scattered point cloud simplification algorithm based on FPFH feature extraction [J]. Journal of Graphics , 2022 , 43 ( 4 ): 599 - 607 . (in Chinese)
田应仲 , 喻永前 , 薛松 . 一种基于双特征约束的三维点云精简算法研究 [J]. 工业控制计算机 , 2021 , 34 ( 10 ): 80 - 81, 84 . doi: 10.3969/j.issn.1001-182X.2021.10.031 http://dx.doi.org/10.3969/j.issn.1001-182X.2021.10.031
TIAN Y ZH , YU Y Q , XUE S . Research on 3D point cloud simplification algorithm based on double feature constraints [J]. Industrial Control Computer , 2021 , 34 ( 10 ): 80 - 81, 84 . (in Chinese) . doi: 10.3969/j.issn.1001-182X.2021.10.031 http://dx.doi.org/10.3969/j.issn.1001-182X.2021.10.031
牛雪娟 , 刘景泰 , 孙雷 . 基于小波变换的栅格点云多分辨率分析 [C]. 第二十七届中国控制会议论文集. 昆明 , 2008 : 1235 - 1239 . doi: 10.1109/chicc.2008.4605516 http://dx.doi.org/10.1109/chicc.2008.4605516
NIU X J , LIU J T , SUN L . Multi-resolution analysis of raster point cloud based on wavelet transform [C]. Proceedings of the 27th Chinese Control Conference , 2008 : 341 - 345 . (in Chinese) . doi: 10.1109/chicc.2008.4605516 http://dx.doi.org/10.1109/chicc.2008.4605516
DIGNE J . An implementation and parallelization of the scale space meshing algorithm [J]. Image Process Line , 2015 , 5 : 282 - 295 . doi: 10.5201/ipol.2015.102 http://dx.doi.org/10.5201/ipol.2015.102
汪千金 , 崔海华 , 张益华 , 等 . 面向光学测量跨源点云的多尺度采样配准方法 [J]. 光学学报 , 2022 , 42 ( 10 ): 139 - 148 . doi: 10.3788/AOS202242.1015002 http://dx.doi.org/10.3788/AOS202242.1015002
WANG Q J , CUI H H , ZHANG Y H , et al . Multi-scale sampling registration method for optical measurement of cross-source point clouds [J]. Acta Optica Sinica , 2022 , 42 ( 10 ): 139 - 148 . (in Chinese) . doi: 10.3788/AOS202242.1015002 http://dx.doi.org/10.3788/AOS202242.1015002
王月海 , 庄志鹏 , 邢娜 . 改进的采样一致性点云配准算法 [J]. 计算机工程与设计 , 2022 , 43 ( 5 ): 1382 - 1388 .
WANG Y H , ZHUANG ZH P , XING N . Improved sampling consistent point cloud registration algorithm [J]. Computer Engineering and Design , 2022 , 43 ( 5 ): 1382 - 1388 . (in Chinese)
宋成航 , 李晋儒 , 刘冠杰 . 利用特征点采样一致性改进ICP算法点云配准方法 [J]. 北京测绘 , 2021 , 35 ( 3 ): 317 - 322 .
SONG CH H , LI J R , LIU G J . Point cloud registration method using feature point sampling consistency initial alignment and improved ICP algorithm [J]. Beijing Surveying and Mapping , 2021 , 35 ( 3 ): 317 - 322 . (in Chinese)
刘跃生 , 陈新度 , 吴磊 , 等 . 混合稀疏迭代最近点配准 [J]. 光学 精密工程 , 2021 , 29 ( 9 ): 2255 - 2267 . doi: 10.37188/OPE.20212909.2255 http://dx.doi.org/10.37188/OPE.20212909.2255
LIU Y S , CHEN X D , WU L , et al . Sparse mixture iterative closest point registration [J]. Optics and Precision Engineering , 2021 , 29 ( 9 ): 2255 - 2267 . (in Chinese) . doi: 10.37188/OPE.20212909.2255 http://dx.doi.org/10.37188/OPE.20212909.2255
冯珂 , 黄卓 . 超声磨削加工表面分形维数计算方法 [J]. 机械管理开发 , 2022 , 37 ( 2 ): 1 - 3, 6 .
FENG K , HUANG ZH . Computation method of fractal features of surface topography in ultrasonic vibration-assisted grinding [J]. Mechanical Management and Development , 2022 , 37 ( 2 ): 1 - 3, 6 . (in Chinese)
刘妮 , 张志毅 . 相似性维数在点云中的应用 [J]. 计算机工程与科学 , 2019 , 41 ( 9 ): 1635 - 1641 . doi: 10.3969/j.issn.1007-130X.2019.09.015 http://dx.doi.org/10.3969/j.issn.1007-130X.2019.09.015
LIU N , ZHANG ZH Y . Application of similarity dimension in point cloud [J]. Computer Engineering & Science , 2019 , 41 ( 9 ): 1635 - 1641 . (in Chinese) . doi: 10.3969/j.issn.1007-130X.2019.09.015 http://dx.doi.org/10.3969/j.issn.1007-130X.2019.09.015
叶震 , 卞超杰 , 梅雨晴 , 等 . 基于逐点插入法的定尺度三角剖分算法研究 [J]. 河南科技 , 2022 , 41 ( 6 ): 11 - 15 .
YE Z , BIAN CH J , MEI Y Q , et al . Research on scaling triangulation algorithm based on point by point insertion method [J]. Henan Science and Technology , 2022 , 41 ( 6 ): 11 - 15 . (in Chinese)
张建伟 , 孔思迪 . 点云三角化处理技术研究 [J]. 成都大学学报(自然科学版) , 2018 , 37 ( 1 ): 49 - 51 .
ZHANG J W , KONG S D . Research on triangulation processing of point cloud [J]. Journal of Chengdu University (Natural Science Edition) , 2018 , 37 ( 1 ): 49 - 51 . (in Chinese)
詹学才 . 三维地质模型四面体剖分及优化研究 [D]. 成都 : 成都理工大学 , 2019 .
ZHAN X C . Study on Tetrahedron Division and Optimization of Three-dimensional Geological Model [D]. Chengdu : Chengdu University of Technology , 2019 . (in Chinese)
0
Views
479
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution