浏览全部资源
扫码关注微信
1.浙江师范大学 工学院 精密机械研究所,浙江 金华 321004
2.浙江省城市轨道交通智能运维技术与装备重点实验室,浙江 金华 321004
Received:20 June 2022,
Revised:13 July 2022,
Published:10 February 2023
移动端阅览
阚君武,王凯,孟凡许等.换向激励式压电振动俘能器[J].光学精密工程,2023,31(03):371-379.
KAN Junwu,WANG Kai,MENG Fanxu,et al.Piezoelectric vibration harvester with excitation direction conversion[J].Optics and Precision Engineering,2023,31(03):371-379.
阚君武,王凯,孟凡许等.换向激励式压电振动俘能器[J].光学精密工程,2023,31(03):371-379. DOI: 10.37188/OPE.20233103.0371.
KAN Junwu,WANG Kai,MENG Fanxu,et al.Piezoelectric vibration harvester with excitation direction conversion[J].Optics and Precision Engineering,2023,31(03):371-379. DOI: 10.37188/OPE.20233103.0371.
为提高在低频、宽带、高强度及大振幅振动环境下的可靠性,提出一种换向激励式压电振动俘能器,它由拾振器和换能器组成。换能器的振动方向垂直于拾振器振动方向(环境振动方向),振动方向的转换通过磁力换向结构实现,换向结构使响应振幅不随外部激励的增加而一直增加,从而提高可靠性。建立了俘能器的动力学模型,通过数值仿真和实验获得了相关参数对其输出特性的影响。仿真和实验结果表明:激励频率小于20 Hz时,该两自由度系统存在两阶谐振频率使输出电压达到峰值,一阶为拾振器谐振频率,二阶为换能器谐振频率。随着拾振簧片长度和拾振质量的增加,一阶谐振频率升高,所对应的输出电压基本不变;二阶谐振频率基本不变,所对应的输出电压逐渐升高;工作频带变宽。当外部激励振幅达到阈值时,换能器的响应振幅被有效控制,输出电压不再随之增加,最佳负载电阻为540 kΩ,此时输出功率最大为0.4 mW。实际应用中可通过改变俘能器的结构参数调整谐振频率及输出电压,将响应振幅控制在安全区域内,以适应低频、宽带、高强度及大振幅的工作环境。
To achieve adaptability to low frequency, wide bandwidth, high amplitude, and other vibration environments, a piezoelectric vibration harvester with excitation direction conversion (PVHEDC) is proposed; it constitutes a vibration collector and transducer. Due to the commutation structure, the vibration direction of the transducer is perpendicular to the ambient vibration direction, limiting the response amplitude. The dynamic model of the PVHEDC was established, and the influence of relevant parameters on its output characteristics was obtained via simulation and experiments. As a result, two natural frequencies were observed considering a low-frequency environment, which are the natural frequencies of the vibration collector and transducer, respectively, causing the output voltage of the PVHEDC to peak. With increasing length and proof mass of the elastic beam, fn1 gradually decreased, while
f
n2
remained unchanged, with the former corresponding to an essentially unchanged output voltage and the latter corresponding to an increased output voltage. Meanwhile, the bandwidth broadened. The experiment results show that when the external excitation amplitude increases to a certain value, the output voltage no longer increases, and the amplitude of the PVHEDC is effectively controlled. The achieved maximum output power is 0.4 mW for the optimal external load resistance of 540 kΩ. In practice, the above parameters influence the resonant frequency of the PVHEDC and its corresponding output voltage and limit the response amplitude, allowing adaptation to low-frequency, broadband, high-intensity, and large-amplitude working environments.
亓有超 , 赵俊青 , 张弛 . 微纳振动能量收集器研究现状与展望 [J]. 机械工程学报 , 2020 , 56 ( 13 ): 1 - 15 . doi: 10.3901/jme.2020.13.001 http://dx.doi.org/10.3901/jme.2020.13.001
QI Y CH , ZHAO J Q , ZHANG CH . Review and prospect of micro-nano vibration energy harvesters [J]. Journal of Mechanical Engineering , 2020 , 56 ( 13 ): 1 - 15 . (in Chinese) . doi: 10.3901/jme.2020.13.001 http://dx.doi.org/10.3901/jme.2020.13.001
KAN X Y , TENG H Z , KARYDIS K . Online exploration and coverage planning in unknown obstacle-cluttered environments [J]. IEEE Robotics and Automation Letters , 2020 , 5 ( 4 ): 5969 - 5976 . doi: 10.1109/lra.2020.3010455 http://dx.doi.org/10.1109/lra.2020.3010455
FAN K Q , LIU J , CAI M L , et al . Exploiting ultralow-frequency energy via vibration-to-rotation conversion of a rope-spun rotor [J]. Energy Conversion and Management , 2020 , 225 : 113433 . doi: 10.1016/j.enconman.2020.113433 http://dx.doi.org/10.1016/j.enconman.2020.113433
阚君武 , 何恒钱 , 王淑云 , 等 . 可调频旋磁激励式压电发电机的设计与试验 [J]. 光学 精密工程 , 2019 , 27 ( 3 ): 577 - 583 . doi: 10.3788/ope.20192703.0577 http://dx.doi.org/10.3788/ope.20192703.0577
KAN J W , HE H Q , WANG SH Y , et al . Structure and performance of rotating piezoelectric generator with tunable frequency [J]. Opt. Precision Eng. , 2019 , 27 ( 3 ): 577 - 583 . (in Chinese) . doi: 10.3788/ope.20192703.0577 http://dx.doi.org/10.3788/ope.20192703.0577
赵裕明 , 金振林 , 冯海兵 . 1T2R三自由度海浪发电装置设计及运动学分析 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 2035 - 2045 . doi: 10.37188/ope.20202809.2035 http://dx.doi.org/10.37188/ope.20202809.2035
ZHAO Y M , JIN ZH L , FENG H B . Design and kinematics of a 1T2R 3-DOF wave power generating device [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2035 - 2045 . (in Chinese) . doi: 10.37188/ope.20202809.2035 http://dx.doi.org/10.37188/ope.20202809.2035
王淑云 , 朱雅娜 , 阚君武 , 等 . 旋磁激励式预弯梁压电俘能器建模仿真与试验 [J]. 机械工程学报 , 2020 , 56 ( 14 ): 224 - 230 . doi: 10.3901/jme.2020.14.224 http://dx.doi.org/10.3901/jme.2020.14.224
WANG SH Y , ZHU Y N , KAN J W , et al . Prebending-cantilever piezo-harvester excited by rotary magnet [J]. Journal of Mechanical Engineering , 2020 , 56 ( 14 ): 224 - 230 . (in Chinese) . doi: 10.3901/jme.2020.14.224 http://dx.doi.org/10.3901/jme.2020.14.224
WANG J L , GENG L F , DING L , et al . The state-of-the-art review on energy harvesting from flow-induced vibrations [J]. Applied Energy , 2020 , 267 : 114902 . doi: 10.1016/j.apenergy.2020.114902 http://dx.doi.org/10.1016/j.apenergy.2020.114902
ZHANG Z H , WANG S Y , KAN J W , et al . A pneumatic piezoelectric vibration energy harvester based on the compressed air-transducer-structure interaction [J]. Energy Conversion and Management , 2020 , 213 : 112861 . doi: 10.1016/j.enconman.2020.112861 http://dx.doi.org/10.1016/j.enconman.2020.112861
FAN K Q , TAN Q X , LIU H Y , et al . Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester [J]. Mechanical Systems and Signal Processing , 2019 , 117 : 594 - 608 . doi: 10.1016/j.ymssp.2018.08.001 http://dx.doi.org/10.1016/j.ymssp.2018.08.001
WANG G Q , LIAO W H , YANG B Q , et al . Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier [J]. Mechanical Systems and Signal Processing , 2018 , 105 : 427 - 446 . doi: 10.1016/j.ymssp.2017.12.025 http://dx.doi.org/10.1016/j.ymssp.2017.12.025
ZHOU Z Y , QIN W Y , ZHU P . Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment [J]. Mechanical Systems and Signal Processing , 2018 , 110 : 260 - 272 . doi: 10.1016/j.ymssp.2018.03.023 http://dx.doi.org/10.1016/j.ymssp.2018.03.023
LALLART M , WU W J , YAN L J , et al . Inductorless synchronized switch harvesting using a piezoelectric oscillator [J]. IEEE Transactions on Power Electronics , 2020 , 35 ( 3 ): 2585 - 2594 . doi: 10.1109/tpel.2019.2925709 http://dx.doi.org/10.1109/tpel.2019.2925709
刘星 , 王佩红 , 张小舟 , 等 . 压电阵列径向分布的二维振动能量采集器 [J]. 光学 精密工程 , 2018 , 26 ( 9 ): 2181 - 2189 . doi: 10.3788/ope.20182609.2181 http://dx.doi.org/10.3788/ope.20182609.2181
LIU X , WANG P H , ZHANG X ZH , et al . Two-dimensional vibration energy harvester with radially distributed piezoelectric array [J]. Opt. Precision Eng. , 2018 , 26 ( 9 ): 2181 - 2189 . (in Chinese) . doi: 10.3788/ope.20182609.2181 http://dx.doi.org/10.3788/ope.20182609.2181
马天兵 , 陈南南 , 吴晓东 , 等 . Z型压电振动能量收集装置 [J]. 光学 精密工程 , 2019 , 27 ( 9 ): 1968 - 1980 . doi: 10.3788/ope.20192709.1968 http://dx.doi.org/10.3788/ope.20192709.1968
MA T B , CHEN N N , WU X D , et al . Z-type piezoelectric vibration energy harvesting device [J]. Opt. Precision Eng. , 2019 , 27 ( 9 ): 1968 - 1980 . (in Chinese) . doi: 10.3788/ope.20192709.1968 http://dx.doi.org/10.3788/ope.20192709.1968
CHAUDHURI D , KUNDU S , CHATTORAJ N . Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application [J]. Microsystem Technologies , 2019 , 25 ( 4 ): 1437 - 1446 . doi: 10.1007/s00542-018-4156-z http://dx.doi.org/10.1007/s00542-018-4156-z
ZHANG J H , QIN L F . A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism [J]. Applied Energy , 2019 , 240 : 26 - 34 . doi: 10.1016/j.apenergy.2019.01.261 http://dx.doi.org/10.1016/j.apenergy.2019.01.261
TOYABUR R M , SALAUDDIN M , PARK J Y . Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration [J]. Ceramics International , 2017 , 43 : S675 - S681 . doi: 10.1016/j.ceramint.2017.05.257 http://dx.doi.org/10.1016/j.ceramint.2017.05.257
WU Y P , QIU J H , ZHOU S P , et al . A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting [J]. Applied Energy , 2018 , 231 : 600 - 614 . doi: 10.1016/j.apenergy.2018.09.082 http://dx.doi.org/10.1016/j.apenergy.2018.09.082
李欣业 , 张明路 . 机械振动 [M]. 北京 : 清华大学出版社 , 2009 .
LI X Y , ZHANG M L . Mechanical Vibrations [M]. Beijing : Tsinghua University publishing house , 2009 . (in Chinese)
刘鸿文 . 高等材料力学 [M]. 北京 : 高等教育出版社 , 1985 .
LIU H W . Advanced Mechanics of Materials [M]. Beijing : Higher Education Press , 1985 . (in Chinese)
YANG W , TOWFIGHIAN S . A parametric resonator with low threshold excitation for vibration energy harvesting [J]. Journal of Sound and Vibration , 2019 , 446 : 129 - 143 . doi: 10.1016/j.jsv.2019.01.038 http://dx.doi.org/10.1016/j.jsv.2019.01.038
ZOU H X , ZHANG W , LI W B , et al . Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester [J]. Smart Materials and Structures , 2017 , 26 ( 11 ): 115023 . doi: 10.1088/1361-665x/aa8eb8 http://dx.doi.org/10.1088/1361-665x/aa8eb8
FU H L , YEATMAN E M . Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation [J]. Mechanical Systems and Signal Processing , 2019 , 125 : 229 - 244 . doi: 10.1016/j.ymssp.2018.04.043 http://dx.doi.org/10.1016/j.ymssp.2018.04.043
FEBBO M , FEBBO M , et al . A novel up-converting mechanism based on double impact for non-linear piezoelectric energy harvesting [J]. Journal of Physics D: Applied Physics , 2020 , 53 ( 47 ): 475501 . doi: 10.1088/1361-6463/abab28 http://dx.doi.org/10.1088/1361-6463/abab28
马天兵 , 贾世盛 , 丁永静 , 等 . 梯形悬臂梁压电振动俘能器的特性研究 [J]. 仪表技术与传感器 , 2021 ( 11 ): 43 - 47 . doi: 10.3969/j.issn.1002-1841.2021.11.009 http://dx.doi.org/10.3969/j.issn.1002-1841.2021.11.009
MA T B , JIA SH SH , DING Y J , et al . Research on characteristics of piezoelectric vibration energy harvester of trapezoidal cantilever beam [J]. Instrument Technique and Sensor , 2021 ( 11 ): 43 - 47 . (in Chinese) . doi: 10.3969/j.issn.1002-1841.2021.11.009 http://dx.doi.org/10.3969/j.issn.1002-1841.2021.11.009
LIU Q , QIN W Y , YANG Y F , et al . Promote performance of vibration energy harvesting by amplified inertial force and clamped piezoelectric beams [J]. Mechanical Systems and Signal Processing , 2022 , 178 : 109291 . doi: 10.1016/j.ymssp.2022.109291 http://dx.doi.org/10.1016/j.ymssp.2022.109291
0
Views
1177
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution