浏览全部资源
扫码关注微信
1.浙江师范大学 物理与电子信息工程学院 信息光学研究所,浙江 金华 321004
2.浙江省光信息检测与显示技术研究重点实验室,浙江 金华 321004
Received:20 May 2022,
Revised:11 July 2022,
Published:10 February 2023
移动端阅览
胡涛,孙雪茹,金伟民.基于神经网络的混沌虹膜相位掩模计算全息加密图像恢复[J].光学精密工程,2023,31(03):417-428.
HU Tao,SUN Xueru,JIN Weimin.Neural network-based computational holographic encryption image reconstruction scheme for chaotic iris phase mask[J].Optics and Precision Engineering,2023,31(03):417-428.
胡涛,孙雪茹,金伟民.基于神经网络的混沌虹膜相位掩模计算全息加密图像恢复[J].光学精密工程,2023,31(03):417-428. DOI: 10.37188/OPE.20233103.0417.
HU Tao,SUN Xueru,JIN Weimin.Neural network-based computational holographic encryption image reconstruction scheme for chaotic iris phase mask[J].Optics and Precision Engineering,2023,31(03):417-428. DOI: 10.37188/OPE.20233103.0417.
为了拓展对计算全息加密图像的解密方法,针对非法攻击难度大的对称-非对称混合加密系统,提出了一种利用神经网络恢复混沌虹膜相位掩模计算全息加密图像的方案。对明文图像进行加密,生成计算全息的密文图像,制作大量的密文明文图像对作为数据集。通过搭建神经网络不断地训练和测试,训练完成后的神经网络可以拟合出密文图像到明文图像的映射关系,解密时不再使用公钥和私钥对密文图像进行解密。实验结果表明:通过神经网络恢复出的图像与明文图像相比,平均互相关系数为0.984,平均峰值信噪比为61.0 dB,平均结构相似性为0.77;对密文图像进行噪声污染,也可以恢复出较高质量的图像,实现了通过神经网络对密文图像解密的目的,方案是可行的并具有较好的鲁棒性。
To expand the decryption method of computational holographic encrypted images for a symmetric-asymmetric hybrid encryption system that cannot be easily attacked illegally, a scheme involving the use of a neural network to restore chaotic iris phase mask computational holographic encrypted images is proposed. First, a plaintext image is encrypted and a ciphertext image of a computational hologram is generated. Next, numerous ciphertext image pairs are generated as datasets. Subsequently, they are continuously trained and tested by using them to build a neural network. Results show that the trained neural network can fit the mapping relationship from the ciphertext image to the plaintext image and that the public or private key is no longer used to decrypt the ciphertext image during decryption. Additionally, the average cross-correlation coefficient is 0.984, the average peak signal-to-noise ratio is 61.0 dB, and the average structural similarity is 0.77, which indicate better performances compared with the performances of a plaintext image recovered by the neural network. By polluting the ciphertext image with noise, a higher quality image is obtained. The purpose of decrypting a ciphertext image via a neural network is achieved, and the scheme is shown to be feasible and robust.
PSALTIS D . Coherent optical information systems [J]. Science , 2002 , 298 ( 5597 ): 1359 - 1363 . doi: 10.1126/science.1078823 http://dx.doi.org/10.1126/science.1078823
CHEN W , JAVIDI B , CHEN X D . Advances in optical security systems [J]. Advances in Optics and Photonics , 2014 , 6 ( 2 ): 120 - 155 . doi: 10.1364/aop.6.000120 http://dx.doi.org/10.1364/aop.6.000120
REFREGIER P , JAVIDI B . Optical image encryption based on input plane and Fourier plane random encoding [J]. Optics Letters , 1995 , 20 ( 7 ): 767 - 769 . doi: 10.1364/ol.20.000767 http://dx.doi.org/10.1364/ol.20.000767
SITU G H , ZHANG J J . Double random-phase encoding in the Fresnel domain [J]. Optics Letters , 2004 , 29 ( 14 ): 1584 - 1586 . doi: 10.1364/ol.29.001584 http://dx.doi.org/10.1364/ol.29.001584
CHEN L F , ZHAO D M . Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms [J]. Optics Express , 2006 , 14 ( 19 ): 8552 - 8560 . doi: 10.1364/oe.14.008552 http://dx.doi.org/10.1364/oe.14.008552
LI C L , LI H M , LI F D , et al . Multiple-image encryption by using robust chaotic map in wavelet transform domain [J]. Optik , 2018 , 171 : 277 - 286 . doi: 10.1016/j.ijleo.2018.06.029 http://dx.doi.org/10.1016/j.ijleo.2018.06.029
MARRON J C , KENDRICK R L , SELDOMRIDGE N , et al . Atmospheric turbulence correction using digital holographic detection: experimental results [J]. Optics Express , 2009 , 17 ( 14 ): 11638 - 11651 . doi: 10.1364/oe.17.011638 http://dx.doi.org/10.1364/oe.17.011638
王雪 , 刘虹遥 , 路鑫超 , 等 . 无透镜全息显微细胞成像 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1644 - 1650 .
WANG X , LIU H Y , LU X CH , et al . Cell imaging by holographic lens-free microscopy [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1644 - 1650 . (in Chinese)
纵浩天 , 张运海 , 王发民 , 等 . 大视场线扫描共聚焦全息显微成像 [J]. 光学 精密工程 , 2021 , 29 ( 1 ): 1 - 9 . doi: 10.37188/OPE.20212901.0001 http://dx.doi.org/10.37188/OPE.20212901.0001
ZONG H T , ZHANG Y H , WANG F M , et al . Large field of view line-scanning confocal holographic microscopy [J]. Opt. Precision Eng. , 2021 , 29 ( 1 ): 1 - 9 . (in Chinese) . doi: 10.37188/OPE.20212901.0001 http://dx.doi.org/10.37188/OPE.20212901.0001
SINGH N , SINHA A . Optical image encryption using fractional Fourier transform and chaos [J]. Optics and Lasers in Engineering , 2008 , 46 ( 2 ): 117 - 123 . doi: 10.1016/j.optlaseng.2007.09.001 http://dx.doi.org/10.1016/j.optlaseng.2007.09.001
SUI L S , DUAN K K , LIANG J L , et al . Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps [J]. Optics Express , 2014 , 22 ( 9 ): 10605 - 10621 . doi: 10.1364/oe.22.010605 http://dx.doi.org/10.1364/oe.22.010605
金聪 , 刘会 . 量子混沌与折叠算法的图像加密系统 [J]. 光学 精密工程 , 2017 , 25 ( 3 ): 749 - 755 . doi: 10.3788/ope.20172503.0749 http://dx.doi.org/10.3788/ope.20172503.0749
JIN C , LIU H . An image encryption scheme based on quantum chaos and folding algorithm [J]. Opt. Precision Eng. , 2017 , 25 ( 3 ): 749 - 755 . (in Chinese) . doi: 10.3788/ope.20172503.0749 http://dx.doi.org/10.3788/ope.20172503.0749
郭媛 , 王充 . 改进Zigzag遍历与哈希的Lorenz混沌构建 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 411 - 419 . doi: 10.37188/ope.20212902.0411 http://dx.doi.org/10.37188/ope.20212902.0411
GUO Y , WANG CH . Improved Zigzag traversal and Lorenz chaotic construction of hash [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 411 - 419 . (in Chinese) . doi: 10.37188/ope.20212902.0411 http://dx.doi.org/10.37188/ope.20212902.0411
SUN X R , HU T , MA L H , et al . The encryption and decryption technology with chaotic iris and compressed sensing based on computer-generated holography [J]. Journal of Optics , 2022 , 51 ( 1 ): 124 - 132 . doi: 10.1007/s12596-021-00750-7 http://dx.doi.org/10.1007/s12596-021-00750-7
MA L H , SUN X R , JIN W M . Symmetric-asymmetric hybrid encryption and decryption system based on chaotic iris phase mask and computer-generated holography [J]. Optical Engineering , 2020 , 59 ( 8 ): 083106 . doi: 10.1117/1.oe.59.8.083106 http://dx.doi.org/10.1117/1.oe.59.8.083106
QIN W , PENG X . Asymmetric cryptosystem based on phase-truncated Fourier transforms [J]. Optics Letters , 2010 , 35 ( 2 ): 118 - 120 . doi: 10.1364/ol.35.000118 http://dx.doi.org/10.1364/ol.35.000118
MA L , WANG Y H , TAN T N . Iris recognition using circular symmetric filters [C]. 2002 International Conference on Pattern Recognition . 1115,2002 , Quebec City , QC, Canada . IEEE , 2002 : 414 - 417 .
TASHIMA H , TAKEDA M , SUZUKI H , et al . Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack [J]. Optics Express , 2010 , 18 ( 13 ): 13772 - 13781 . doi: 10.1364/oe.18.013772 http://dx.doi.org/10.1364/oe.18.013772
SOLIMAN R F , BANBY G MEL , ALGARNI A D , et al . Double random phase encoding for cancelable face and iris recognition [J]. Applied Optics , 2018 , 57 ( 35 ): 10305 - 10316 . doi: 10.1364/ao.57.010305 http://dx.doi.org/10.1364/ao.57.010305
MA L H , JIN W M . Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography [J]. Optics Communications , 2018 , 407 : 51 - 56 . doi: 10.1016/j.optcom.2017.08.047 http://dx.doi.org/10.1016/j.optcom.2017.08.047
SIMONYAN K , VEDALDI A , ZISSERMAN A . Learning local feature descriptors using convex optimisation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2014 , 36 ( 8 ): 1573 - 1585 . doi: 10.1109/tpami.2014.2301163 http://dx.doi.org/10.1109/tpami.2014.2301163
SZEGEDY C , LIU W , JIA Y Q , et al . Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 712,2015 , Boston, MA, USA. IEEE , 2015 : 1 - 9 . doi: 10.1109/cvpr.2015.7298594 http://dx.doi.org/10.1109/cvpr.2015.7298594
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
刘航 , 肖永亮 , 田军龙 , 等 . 基于深度学习的离轴菲涅耳数字全息非线性重构 [J]. 光子学报 , 2020 , 49 ( 7 ): 199 - 210 . doi: 10.3788/gzxb20204907.0709001 http://dx.doi.org/10.3788/gzxb20204907.0709001
LIU H , XIAO Y L , TIAN J L , et al . Nonlinear reconstruction for off-axis Fresnel digital holography with deep learning [J]. Acta Photonica Sinica , 2020 , 49 ( 7 ): 199 - 210 . (in Chinese) . doi: 10.3788/gzxb20204907.0709001 http://dx.doi.org/10.3788/gzxb20204907.0709001
WANG K Q , QIAN K M , DI J L , et al . Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction [J]. Optics Letters , 2020 , 45 ( 15 ): 4220 - 4223 . doi: 10.1364/ol.395445 http://dx.doi.org/10.1364/ol.395445
YIN D , GU Z Z , ZHANG Y R , et al . Digital holographic reconstruction based on deep learning framework with unpaired data [J]. IEEE Photonics Journal , 2019 , 12 ( 2 ): 1 - 12 . doi: 10.1109/jphot.2019.2961137 http://dx.doi.org/10.1109/jphot.2019.2961137
HAI H , PAN S X , LIAO M H , et al . Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning [J]. Optics Express , 2019 , 27 ( 15 ): 21204 - 21213 . doi: 10.1364/oe.27.021204 http://dx.doi.org/10.1364/oe.27.021204
徐昭 , 周昕 , 白星 , 等 . 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法 [J]. 物理学报 , 2021 , 70 ( 14 ): 226 - 232 . doi: 10.7498/aps.70.20202075 http://dx.doi.org/10.7498/aps.70.20202075
XU ZH , ZHOU X , BAI X , et al . Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning [J]. Acta Physica Sinica , 2021 , 70 ( 14 ): 226 - 232 . (in Chinese) . doi: 10.7498/aps.70.20202075 http://dx.doi.org/10.7498/aps.70.20202075
徐昭 , 周昕 , 白星 , 等 . 基于深度学习的混沌加密灰度图像重建方法 [J]. 光学与光电技术 , 2021 , 19 ( 3 ): 75 - 81 .
XU ZH , ZHOU X , BAI X , et al . Reconstruction of chaotic grayscale image encryption based on deep learning [J]. Optics & Optoelectronic Technology , 2021 , 19 ( 3 ): 75 - 81 . (in Chinese)
LEE Y T C , FANG Y C , TIEN C H . Deep neural network for coded mask cryptographical imaging [J]. Applied Optics , 2021 , 60 ( 6 ): 1686 - 1693 . doi: 10.1364/ao.415120 http://dx.doi.org/10.1364/ao.415120
LIAO M H , ZHENG S S , PAN S X , et al . Deep-learning-based ciphertext-only attack on optical double random phase encryption [J]. Opto-Electronic Advances , 2021 , 4 ( 5 ): 200016 . doi: 10.29026/oea.2021.200016 http://dx.doi.org/10.29026/oea.2021.200016
WANG X G , WEI H Y . Cryptanalysis of compressive interference-based optical encryption using a U-net deep learning network [J]. Optics Communications , 2022 , 507 : 127641 . doi: 10.1016/j.optcom.2021.127641 http://dx.doi.org/10.1016/j.optcom.2021.127641
JIN M X , WANG W Q , WANG X G . Optical color image cryptosystem based on interference principle and deep learning [J]. Optik , 2022 , 251 : 168474 . doi: 10.1016/j.ijleo.2021.168474 http://dx.doi.org/10.1016/j.ijleo.2021.168474
WANG S Y , HONG L , JIANG J . An image encryption scheme using a chaotic neural network and a network with multistable hyperchaos [J]. Optik , 2022 , 268 : 169758 . doi: 10.1016/j.ijleo.2022.169758 http://dx.doi.org/10.1016/j.ijleo.2022.169758
WANG F , NI R J , WANG J , et al . Invertible encryption network for optical image cryptosystem [J]. Optics and Lasers in Engineering , 2022 , 149 : 106784 . doi: 10.1016/j.optlaseng.2021.106784 http://dx.doi.org/10.1016/j.optlaseng.2021.106784
ZHANG L , WANG Y , LI D H , et al . Cryptanalysis for a light-field 3D cryptosystem based on M-cGAN [J]. Optics Letters , 2021 , 46 ( 19 ): 4916 - 4919 . doi: 10.1364/ol.436049 http://dx.doi.org/10.1364/ol.436049
WANG X G , WANG W Q , WEI H Y , et al . Holographic and speckle encryption using deep learning [J]. Optics Letters , 2021 , 46 ( 23 ): 5794 - 5797 . doi: 10.1364/ol.443398 http://dx.doi.org/10.1364/ol.443398
0
Views
3129
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution