浏览全部资源
扫码关注微信
重庆理工大学 机械工程学院,重庆 400054
Received:15 August 2022,
Revised:29 August 2022,
Published:25 February 2023
移动端阅览
余永维,王康,杜柳青等.点云模型的匹配点对优化配准[J].光学精密工程,2023,31(04):503-516.
YU Yongwei,WANG Kang,DU Liuqing,et al.Matching point pair optimization registration method for point cloud model[J].Optics and Precision Engineering,2023,31(04):503-516.
余永维,王康,杜柳青等.点云模型的匹配点对优化配准[J].光学精密工程,2023,31(04):503-516. DOI: 10.37188/OPE.20233104.0503.
YU Yongwei,WANG Kang,DU Liuqing,et al.Matching point pair optimization registration method for point cloud model[J].Optics and Precision Engineering,2023,31(04):503-516. DOI: 10.37188/OPE.20233104.0503.
针对传统迭代最近点(ICP)算法在点云存在重叠或部分重叠时,配准误差大且适应性差的问题,提出一种基于匹配点对加权优化的改进配准算法。首先,提出一种改进体素降采样算法对点云进行采样,减少数据量的同时提高算法对噪声的鲁棒性;然后,采用改进Sigmoid函数赋予参与配准的匹配点对不同的权重,克服传统算法忽视距离较小的匹配点对中仍具有错误点对的缺点,同时提高了配准精度和收敛速度;最后,提出一种采用奇异值分解法(SVD)求解配准参数的方法,进一步提高配准精度。设计了不同重叠度的配准实验和噪声实验,并结合曲轴三维点云重建对本文算法进行验证。实验结果表明:本文算法误差较Tr-ICP算法减少了约34.1%,较AA-ICP算法减少了约29%,配准时间较Tr-ICP算法缩短了约16.1%。最终表明本文算法具有更高配准精度的同时,具有更好的适用性和鲁棒性。
To address the problems of large registration errors and poor adaptability of the traditional iterative closest point (ICP) algorithm when point clouds overlap or partially overlap, an improved registration algorithm based on weighted optimization of matching point pairs is proposed. First, an improved voxel downsampling algorithm is proposed to sample point clouds, which reduces the amount of data and improves the robustness of the algorithm against noise. Then, the improved Sigmoid function is used to assign different weights to the matching point pairs participating in the registration, which overcomes the disadvantage of traditional algorithms that ignore matching point pairs with small distances still have wrong point pairs, while improves the registration accuracy and convergence speed. Finally, a method to solve registration parameters using singular value decomposition (SVD) is proposed to further improve registration accuracy. The registration and noise experiments with different overlapping degrees were performed, and the proposed algorithm was verified by combining the three-dimensional point cloud reconstruction of the crankshaft. The experimental results showed that, compared with the Tr-ICP and AA-ICP algorithms, the error in the proposed algorithm was reduced by approximately 34.1% and 29%, respectively. Further, the registration time was shortened by approximately 16.1% compared with the Tr-ICP algorithm. Hence, compared with traditional algorithms, the proposed algorithm has higher registration accuracy, better applicability, and robustness.
BESL P J , MCKAY N D . A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1992 , 14 ( 2 ): 239 - 256 . doi: 10.1109/34.121791 http://dx.doi.org/10.1109/34.121791
LI F , STODDART D , HITCHENS C . Method to automatically register scattered point clouds based on principal pose estimation [J]. Optical Engineering , 2017 , 56 ( 4 ): 044107 . doi: 10.1117/1.oe.56.4.044107 http://dx.doi.org/10.1117/1.oe.56.4.044107
AIGER D , MITRA N J , COHEN-OR D . 4-points congruent sets for robust pairwise surface registration [J]. ACM Transactions on Graphics , 2008 , 27 ( 3 ): 1 - 10 . doi: 10.1145/1360612.1360684 http://dx.doi.org/10.1145/1360612.1360684
MOHAMAD M , AHMED M T , RAPPAPORT D , et al . Super generalized 4PCS for 3D registration [C]. 2015 International Conference on 3D Vision . 1922,2015 , Lyon, France . IEEE , 2015 : 598 - 606 . doi: 10.1109/3dv.2015.74 http://dx.doi.org/10.1109/3dv.2015.74
林森 , 张强 . 应用邻域点信息描述与匹配的点云配准 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 984 - 997 . doi: 10.37188/OPE.20223008.0984 http://dx.doi.org/10.37188/OPE.20223008.0984
LIN S , ZHANG Q . Point cloud registration using neighborhood point information description and matching [J]. Opt. Precision Eng. , 2022 , 30 ( 8 ): 984 - 997 . (in Chinese) . doi: 10.37188/OPE.20223008.0984 http://dx.doi.org/10.37188/OPE.20223008.0984
吴庆华 , 蔡琼捷思 , 黎志昂 , 等 . 扩展高斯图像聚类的缺失点云配准 [J]. 光学 精密工程 , 2021 , 29 ( 5 ): 1199 - 1206 . doi: 10.37188/OPE.20212905.1199 http://dx.doi.org/10.37188/OPE.20212905.1199
WU Q H , CAI Q J S , LI ZH A , et al . Registration of losing point cloud based on clustering extended Gaussian image [J]. Opt. Precision Eng. , 2021 , 29 ( 5 ): 1199 - 1206 . (in Chinese) . doi: 10.37188/OPE.20212905.1199 http://dx.doi.org/10.37188/OPE.20212905.1199
REN T Y , WU R C . An acceleration algorithm of 3D point cloud registration based on iterative closet point [C]. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). 1416,2020 , Dalian, China. IEEE , 2020 : 271 - 276 . doi: 10.1109/ipec49694.2020.9114965 http://dx.doi.org/10.1109/ipec49694.2020.9114965
YU J W , YU C G , LIN C D , et al . Improved iterative closest point (ICP) point cloud registration algorithm based on matching point pair quadratic filtering [C]. 2021 International Conference on Computer, Internet of Things and Control Engineering (CITCE). 1214,2021 , Guangzhou, China. IEEE , 2022 : 1 - 5 . doi: 10.1109/citce54390.2021.00008 http://dx.doi.org/10.1109/citce54390.2021.00008
PAVLOV A L , OVCHINNIKOV G W , DERBYSHEV D Y , et al . AA-ICP: iterative closest point with Anderson acceleration [C]. 2018 IEEE International Conference on Robotics and Automation (ICRA). 2125,2018 , Brisbane, QLD, Australia. IEEE , 2018 : 3407 - 3412 . doi: 10.1109/icra.2018.8461063 http://dx.doi.org/10.1109/icra.2018.8461063
DMITRY , CHETVERIKOV . Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm [J]. Image and Vision Computing , 2005 , 23 ( 3 ): 299 - 309 . doi: 10.1016/j.imavis.2004.05.007 http://dx.doi.org/10.1016/j.imavis.2004.05.007
王子玮 , 张小俭 , 严思杰 , 等 . 一种稀疏混合ICP匹配方案 [J]. 中国科学: 技术科学 , 2021 , 51 ( 7 ): 837 - 849 . doi: 10.1360/sst-2020-0287 http://dx.doi.org/10.1360/sst-2020-0287
WANG Z W , ZHANG X J , YAN S J , et al . Sparse mixed ICP registration method [J]. Scientia Sinica (Technologica) , 2021 , 51 ( 7 ): 837 - 849 . (in Chinese) . doi: 10.1360/sst-2020-0287 http://dx.doi.org/10.1360/sst-2020-0287
JIANMIN , DONG . LieTrICP: an improvement of trimmed iterative closest point algorithm [J]. Neurocomputing , 2014 , 140 : 67 - 76 . doi: 10.1016/j.neucom.2014.03.035 http://dx.doi.org/10.1016/j.neucom.2014.03.035
刘跃生 , 陈新度 , 吴磊 , 等 . 混合稀疏迭代最近点配准 [J]. 光学 精密工程 , 2021 , 29 ( 9 ): 2255 - 2267 . doi: 10.37188/OPE.20212909.2255 http://dx.doi.org/10.37188/OPE.20212909.2255
LIU Y SH , CHEN X D , WU L , et al . Sparse mixture iterative closest point registration [J]. Opt. Precision Eng. , 2021 , 29 ( 9 ): 2255 - 2267 . (in Chinese) . doi: 10.37188/OPE.20212909.2255 http://dx.doi.org/10.37188/OPE.20212909.2255
WANG Y , SUN Y B , LIU Z W , et al . Dynamic graph CNN for learning on point clouds [J]. ACM Transactions on Graphics , 2019 , 38 ( 5 ): 1 - 12 . doi: 10.1145/3326362 http://dx.doi.org/10.1145/3326362
HAO MA . 3D convolutional auto-encoder based multi-scale feature extraction for point cloud registration [J]. Optics & Laser Technology , 2022 , 149 : 107860 . doi: 10.1016/j.optlastec.2022.107860 http://dx.doi.org/10.1016/j.optlastec.2022.107860
XIANG CHEN . Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds [J]. Medical Image Analysis , 2021 , 74 : 102228 . doi: 10.1016/j.media.2021.102228 http://dx.doi.org/10.1016/j.media.2021.102228
WEI B , YUAN Y , WANG Q . MSPNET: multi-supervised parallel network for crowd counting [C]. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 48,2020 , Barcelona, Spain. IEEE , 2020 : 2418 - 2422 . doi: 10.1109/icassp40776.2020.9054479 http://dx.doi.org/10.1109/icassp40776.2020.9054479
ZHIYUAN , ZHANG . Deep learning based point cloud registration: an overview [J]. Virtual Reality & Intelligent Hardware , 2020 , 2 ( 3 ): 222 - 246 . doi: 10.1016/j.vrih.2020.05.002 http://dx.doi.org/10.1016/j.vrih.2020.05.002
RAPOSO C , BARRETO J P . Using 2 point+ normal sets for fast registration of point clouds with small overlap [C]. 2017 IEEE International Conference on Robotics and Automation (ICRA) . IEEE , 2017 : 5652 - 5658 . doi: 10.1109/icra.2017.7989664 http://dx.doi.org/10.1109/icra.2017.7989664
ARUN K S , HUANG T S , BLOSTEIN S D . Least-squares fitting of two 3-D point sets [J]. IEEE Transactions on pattern analysis and machine intelligence , 1987 ( 5 ): 698 - 700 . doi: 10.1109/tpami.1987.4767965 http://dx.doi.org/10.1109/tpami.1987.4767965
0
Views
688
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution