JIA Xiaoxue,ZHAO Dongqing,ZHANG Letian,et al.A visual SLAM algorithm based on adaptive inertial navigation assistant feature matching[J].Optics and Precision Engineering,2023,31(05):621-630.
This paper proposes a feature-matching algorithm based on an adaptive search radius to improve the accuracy of SLAM localization and mapping. This method can overcome the problem in which the search radius of feature matching is fixed in the traditional algorithm, leading to a high mismatching rate of the visual odometer in high dynamic motion. The algorithm first extracts and matches the features of the left and right images of the binocular camera and obtains the three-dimensional coordinates of the map points. Second, the camera pose is predicted by the measured values of the pre-integral inertial measurement unit. Then, the covariance of the predicted pose is calculated according to the error propagation law. Finally, the predicted pose is used to project the map points to the image to get the corresponding pixel coordinates. According to the error in pixel coordinates, the most likely radius of the map point is determined. Experimental results show that this method can effectively reduce the search radius of feature matching and significantly improve the accuracy of image feature matching. The position and pose accuracy of the tracking thread in the ORB-SLAM3 system is improved by approximately 38.09%, and the system's whole position and pose accuracy is improved by approximately 16.38%. This method can provide an adaptive region constraint for each feature point, improve the accuracy of feature point matching, improve the precision of position and pose estimation of the whole SLAM system, and build a more accurate dense map.
DI K C , WAN W H , ZHAO H Y , et al . Progress and applications of visual SLAM [J]. Acta Geodaetica et Cartographica Sinica , 2018 , 47 ( 6 ): 770 - 779 . (in Chinese) . doi: 10.11947/j.AGCS.2018.20170652 http://dx.doi.org/10.11947/j.AGCS.2018.20170652
KROMBACH N , DROESCHEL D , HOUBEN S , et al . Feature-based visual odometry prior for real-time semi-dense stereo SLAM [J]. Robotics and Autonomous Systems , 2018 , 109 : 38 - 58 . doi: 10.1016/j.robot.2018.08.002 http://dx.doi.org/10.1016/j.robot.2018.08.002
WANG C D , LIU F Y , LI Z H , et al . Research on image mosaic method based on binocular vision feature point matching [J]. Laser & Optoelectronics Progress , 2021 , 58 ( 12 ): 357 - 365 . (in Chinese)
HONG S , KIM J . Selective image registration for efficient visual SLAM on planar surface structures in underwater environment [J]. Autonomous Robots , 2019 , 43 ( 7 ): 1665 - 1679 . doi: 10.1007/s10514-018-09824-1 http://dx.doi.org/10.1007/s10514-018-09824-1
CAI H Y , ZHAO S L , CUI S Y , et al . Nine-axis inertial fusion method based on dynamic magnetic field calibration [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2007 - 2016 . (in Chinese) . doi: 10.37188/OPE.20202809.2007 http://dx.doi.org/10.37188/OPE.20202809.2007
PAN L H , TIAN F Q , YING W J , et al . Efficient visual odometry algorithm combining stereo vision and inertial navigation information [J]. Application Research of Computers , 2021 , 38 ( 6 ): 1739 - 1743, 1769 . (in Chinese)
WU J Q , SONG X G . Review on development of simultaneous localization and mapping technology [J]. Journal of Shandong University (Engineering Science) , 2021 , 51 ( 5 ): 16 - 31 . (in Chinese)
MASIERO A , VETTORE A . Improved feature matching for mobile devices with IMU [J]. Sensors (Basel, Switzerland) , 2016 , 16 ( 8 ): E1243 . doi: 10.3390/s16081243 http://dx.doi.org/10.3390/s16081243
WU B , WANG X R . Inertial navigation aided image feature matching method [J]. Laser & Optoelectronics Progress , 2020 , 57 ( 10 ): 346 - 354 . (in Chinese) . doi: 10.3788/lop57.101509 http://dx.doi.org/10.3788/lop57.101509
GUAN Q , WEI G L , WANG Y , et al . A dual-mode automatic switching feature points matching algorithm fusing IMU data [J]. Measurement , 2021 , 185 : 110043 . doi: 10.1016/j.measurement.2021.110043 http://dx.doi.org/10.1016/j.measurement.2021.110043
GUAN Q , WEI G L , WANG L C , et al . A novel feature points tracking algorithm in terms of IMU-aided information fusion [J]. IEEE Transactions on Industrial Informatics , 2021 , 17 ( 8 ): 5304 - 5313 . doi: 10.1109/tii.2020.3024079 http://dx.doi.org/10.1109/tii.2020.3024079
ZHANG Y , JIANG T , JIANG G W , et al . Uniform distributed subpixel ORB feature extraction method for high-precision SLAM [J]. Opt. Precision Eng. , 2018 , 26 ( 10 ): 2575 - 2583 . (in Chinese) . doi: 10.3788/ope.20182610.2575 http://dx.doi.org/10.3788/ope.20182610.2575
CAMPOS C , ELVIRA R , RODRÍGUEZ J J G , et al . ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM [J]. IEEE Transactions on Robotics , 2021 , 37 ( 6 ): 1874 - 1890 . doi: 10.1109/tro.2021.3075644 http://dx.doi.org/10.1109/tro.2021.3075644
LUPTON T , SUKKARIEH S . Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions [J]. IEEE Transactions on Robotics , 2012 , 28 ( 1 ): 61 - 76 . doi: 10.1109/tro.2011.2170332 http://dx.doi.org/10.1109/tro.2011.2170332
FORSTER C , CARLONE L , DELLAERT F , et al . On-Manifold Preintegration Theory for Fast and Accurate Visual-Inertial Navigation [J]. IEEE Transactions on Robotics , 33 ( 1 ): 1 - 21 . doi: 10.1109/tro.2016.2597321 http://dx.doi.org/10.1109/tro.2016.2597321
BURRI M , NIKOLIC J , GOHL P , et al . The EuRoC micro aerial vehicle datasets [J]. The International Journal of Robotics Research , 2016 , 35 ( 10 ): 1157 - 1163 . doi: 10.1177/0278364915620033 http://dx.doi.org/10.1177/0278364915620033
SCHUBERT D , GOLL T , DEMMEL N , et al . The TUM VI benchmark for evaluating visual-inertial odometry [C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid , Spain . IEEE , 2018 : 1680 - 1687 . doi: 10.1109/iros.2018.8593419 http://dx.doi.org/10.1109/iros.2018.8593419