浏览全部资源
扫码关注微信
陆军工程大学 石家庄校区,河北 石家庄 050003
Received:29 May 2022,
Revised:22 August 2022,
Published:25 March 2023
移动端阅览
李青竹,李志宁,石志勇等.MGTS单航线测量用于磁性目标模式识别[J].光学精密工程,2023,31(06):872-891.
LI Qingzhu,LI Zhining,SHI Zhiyong,et al.Single heading-line survey of MGTS for magnetic target pattern recognition[J].Optics and Precision Engineering,2023,31(06):872-891.
李青竹,李志宁,石志勇等.MGTS单航线测量用于磁性目标模式识别[J].光学精密工程,2023,31(06):872-891. DOI: 10.37188/OPE.20233106.0872.
LI Qingzhu,LI Zhining,SHI Zhiyong,et al.Single heading-line survey of MGTS for magnetic target pattern recognition[J].Optics and Precision Engineering,2023,31(06):872-891. DOI: 10.37188/OPE.20233106.0872.
磁梯度张量系统(MGTS)二维平面网格测量常用于磁性目标识别,但其测量难度大、采集效率低、仪器精度要求高,为此提出一种基于MGTS单航线测量的磁性目标模式识别方法。首先,对磁梯度张量分量、特征值、不变量等15个属性量进行磁化方向敏感程度分析,其中对磁化方向较敏感特征量用以识别目标姿态,而不敏感特征量用以识别目标形状;然后,进行MGTS单航线测量,提取测量特征量的时域信号波形特征参数,并设置相应类别标签,主成分分析(PCA)降维方法用以实现特征可视化并确定最佳特征维数;最后,利用麻雀搜索算法优化的核极限学习机(SSA-KELM)对航线测量样本数据进行训练和测试,最终实现磁性目标的模式识别。仿真中对磁偶极子的不同磁化方向类别和球体、长方体和圆柱体等几何体的不同形状类别的识别精度均达到100%;实验中针对3种形状磁铁及其3类姿态共测量了180条学习航线,在6:4的训练测试比下,磁铁姿态和形状识别结果完全准确。
The planar grid measurement of the magnetic gradient tensor system (MGTS) is often utilized for magnetic target recognition; however, it is difficult to measure, complicated to analyze, and requires high instrument precision. In this regard, we propose a magnetic target pattern recognition method based on MGTS single heading-line survey. First, the sensitivity of magnetization direction is analyzed for 15 attributes including the components, eigenvalues, and invariants of the magnetic gradient tensor (MGT). The more sensitive attributes are used to identify target postures, and the insensitive ones are for target shapes. Then, the time-domain signal characteristics of the measured quantities are extracted and the category labels are set. Principal component analysis (PCA) is employed to reduce dimensionality, visualize features, and determine the optimal dimension. Finally, the kernel extreme learning machine optimized by the sparrow search algorithm (SSA-KELM) is used to train and test the survey sample data. The pattern recognition of the magnetic target is hence realized. In the simulation, the recognition of 1) different magnetization direction categories of magnetic dipoles and 2) shape categories of geometric bodies such as the sphere, cuboid, and cylinder is 100% accurate. In the experiment, a total of 180 learning routes were measured for three types of magnets and their corresponding postures. Under the training:testing ratio of 6:4, the results of magnet posture and shape recognition were completely accurate.
SHEINKER A , GINZBURG B , SALOMONSKI N , et al . Magnetic anomaly detection using high-order crossing method [J]. IEEE Transactions on Geoscience and Remote Sensing , 2012 , 50 ( 4 ): 1095 - 1103 . doi: 10.1109/tgrs.2011.2164086 http://dx.doi.org/10.1109/tgrs.2011.2164086
YIN G , ZHANG Y , FAN H , et al .. Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data [J]. Journal of Applied Geophysics , 2016 , 128 : 131 - 139 . doi: 10.1016/j.jappgeo.2016.03.022 http://dx.doi.org/10.1016/j.jappgeo.2016.03.022
DAVID WIGH M , HANSEN T M , DØSSING A . Inference of unexploded ordnance (UXO) by probabilistic inversion of magnetic data [J]. Geophysical Journal International , 2020 , 220 ( 1 ): 37 - 58 . doi: 10.1093/gji/ggz421 http://dx.doi.org/10.1093/gji/ggz421
PAOLETTI V , BUGGI A , PAŠTEKA R . UXO detection by multiscale potential field methods [J]. Pure and Applied Geophysics , 2019 , 176 ( 10 ): 4363 - 4381 . doi: 10.1007/s00024-019-02202-7 http://dx.doi.org/10.1007/s00024-019-02202-7
KIM H M , HEO C G , CHO S H , et al . Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors [J]. IEEE Transactions on Magnetics , 2018 , 54 ( 11 ): 1 - 5 . doi: 10.1109/tmag.2018.2853618 http://dx.doi.org/10.1109/tmag.2018.2853618
YIN G , ZHANG L . Three-dimensional reconstruction of a small-scale magnetic target from magnetic gradient observations [J]. Journal of Magnetism and Magnetic Materials , 2019 , 482 : 229 - 238 . doi: 10.1016/j.jmmm.2019.03.066 http://dx.doi.org/10.1016/j.jmmm.2019.03.066
CLARK D A . New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength [J]. Exploration Geophysics , 2012 , 43 ( 4 ): 267 - 282 . doi: 10.1071/eg12020 http://dx.doi.org/10.1071/eg12020
尹刚 , 张英堂 , 米松林 , 等 . 基于倾斜角和Helbig方法的多磁源目标反演技术 [J]. 上海交通大学学报 , 2017 , 51 ( 5 ): 577 - 584 .
YIN G , ZHANG Y T , MI S L , et al . Multiple magnetic targets inversion technique based on tilt angle and helbig method [J]. Journal of Shanghai Jiao Tong University , 2017 , 51 ( 5 ): 577 - 584 . (in Chinese)
LI J P , ZHANG Y T , FAN H B , et al . Estimating the location of magnetic sources using magnetic gradient tensor data [J]. Exploration Geophysics , 2019 , 50 ( 6 ): 600 - 612 . doi: 10.1080/08123985.2019.1615834 http://dx.doi.org/10.1080/08123985.2019.1615834
LI Q Z , SHI Z Y , LI Z N , et al . Magnetic object positioning based on second-order magnetic gradient tensor system [J]. IEEE Sensors Journal , 2021 , 21 ( 16 ): 18237 - 18248 . doi: 10.1109/jsen.2021.3085573 http://dx.doi.org/10.1109/jsen.2021.3085573
LI Q Z , SHI Z Y , LI Z N , et al . Preferred configuration and detection limits estimation of magnetic gradient tensor system [J]. IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 14 . doi: 10.1109/tim.2021.3109741 http://dx.doi.org/10.1109/tim.2021.3109741
JAIN A K , DUIN R P W , MAO J C . Statistical pattern recognition: a review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000 , 22 ( 1 ): 4 - 37 . doi: 10.1109/34.824819 http://dx.doi.org/10.1109/34.824819
HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications [J]. Neurocomputing , 2006 , 70 ( 1/2/3 ): 489 - 501 . doi: 10.1016/j.neucom.2005.12.126 http://dx.doi.org/10.1016/j.neucom.2005.12.126
SNYDSMAN W E , AMINZADEH F , WEIL C B . Pattern recognition in geophysical exploration [C]. SPIE Proceedings ", " Pattern Recognition and Acoustical Imaging. Newport Beach, CA. SPIE , 1987 : 53 - 60 . doi: 10.1117/12.940248 http://dx.doi.org/10.1117/12.940248
CALDERÓN-MACÍAS C , SEN M K , STOFFA P L . Artificial neural networks for parameter estimation in geophysics [J]. Geophysical Prospecting , 2000 , 48 ( 1 ): 21 - 47 . doi: 10.1046/j.1365-2478.2000.00171.x http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
FERN 225 ; NDEZ J P, BARROWES B, O’NEILL K, et al. Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation[C]. Defense and Security Symposium. Proc SPIE 6217, Detection and Remediation Technologies for Mines and Minelike Targets XI, Orlando (Kissimmee) , Florida, USA . 2006, 6217 : 25 - 32 . doi: 10.1117/12.667963 http://dx.doi.org/10.1117/12.667963
ANISH C , TURLAPATY , . A pattern recognition based approach to consistency analysis of geophysical datasets [J]. Computers & Geosciences , 2010 , 36 ( 4 ): 464 - 476 . doi: 10.1016/j.cageo.2009.10.002 http://dx.doi.org/10.1016/j.cageo.2009.10.002
EHRET B . Pattern recognition of geophysical data [J]. Geoderma , 2010 , 160 ( 1 ): 111 - 125 . doi: 10.1016/j.geoderma.2009.09.008 http://dx.doi.org/10.1016/j.geoderma.2009.09.008
谢永茂 . 基于模板匹配的局部磁异常识别方法 [D]. 北京 : 中国地质大学(北京) , 2012 .
XIE Y M . Recognition of Magnetic Local Anomaly Based on Template Matching [D]. Beijing : China University of Geosciences , 2012 . (in Chinese)
李昌珑 , 李宗超 , 吕红山 , 等 . 基于三维图像模式识别的西藏东南部地震灾害损失风险评估 [J]. 地球物理学报 , 2019 , 62 ( 1 ): 393 - 410 . doi: 10.6038/cjg2019M0360 http://dx.doi.org/10.6038/cjg2019M0360
LI C L , LI Z C , LÜ H S , et al . Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition [J]. Chinese Journal of Geophysics , 2019 , 62 ( 1 ): 393 - 410 . (in Chinese) . doi: 10.6038/cjg2019M0360 http://dx.doi.org/10.6038/cjg2019M0360
ZHENG J , FAN H , ZHANG Q , et al . Magnetic anomaly target recognition based on SVD and SVMs [J]. IEEE Transactions on Magnetics , 2019 , 55 ( 9 ): 1 - 8 . doi: 10.1109/tmag.2019.2914881 http://dx.doi.org/10.1109/tmag.2019.2914881
ZHENG J Y , FAN H B , YIN G , et al . A method of using geomagnetic anomaly to recognize objects based on HOG and 2D-AVMD [J]. AIP Advances , 2019 , 9 ( 7 ): 075015 . doi: 10.1063/1.5110626 http://dx.doi.org/10.1063/1.5110626
ZHOU Z J , ZHANG M , CHEN J F , et al . Detection and classification of multi-magnetic targets using mask-RCNN [J]. IEEE Access , 2020 , 8 : 187202 - 187207 . doi: 10.1109/access.2020.3030676 http://dx.doi.org/10.1109/access.2020.3030676
HUANG G B . An insight into extreme learning machines: random neurons, random features and kernels [J]. Cognitive Computation , 2014 , 6 ( 3 ): 376 - 390 . doi: 10.1007/s12559-014-9255-2 http://dx.doi.org/10.1007/s12559-014-9255-2
XUE J K , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering , 2020 , 8 ( 1 ): 22 - 34 . doi: 10.1080/21642583.2019.1708830 http://dx.doi.org/10.1080/21642583.2019.1708830
ABDI H , WILLIAMS L J . Principal component analysis [J]. Wiley interdisciplinary reviews: computational statistics , 2010 , 2 ( 4 ): 433 - 459 . doi: 10.1002/wics.101 http://dx.doi.org/10.1002/wics.101
李青竹 , 李志宁 , 张英堂 , 等 . 磁梯度张量系统传感器阵列的快速旋转校准 [J]. 光学 精密工程 , 2018 , 26 ( 7 ): 1813 - 1826 . doi: 10.3788/ope.20182607.1813 http://dx.doi.org/10.3788/ope.20182607.1813
LI Q Z , LI Z N , ZHANG Y T , et al . Fast rotation calibration of sensor array in magnetic gradient tensor system [J]. Opt. Precision Eng. , 2018 , 26 ( 7 ): 1813 - 1826 . (in Chinese) . doi: 10.3788/ope.20182607.1813 http://dx.doi.org/10.3788/ope.20182607.1813
李青竹 , 李志宁 , 张英堂 , 等 . 张量衍生不变关系下的磁源单点定位 [J]. 光学 精密工程 , 2019 , 27 ( 8 ): 1880 - 1893 . doi: 10.3788/ope.20192708.1880 http://dx.doi.org/10.3788/ope.20192708.1880
LI Q Z , LI Z N , ZHANG Y T , et al . Magnetic source single-point positioning by tensor derivative invariant relations [J]. Opt. Precision Eng. , 2019 , 27 ( 8 ): 1880 - 1893 . (in Chinese) . doi: 10.3788/ope.20192708.1880 http://dx.doi.org/10.3788/ope.20192708.1880
马国庆 , 李丽丽 , 杜晓娟 . 磁张量数据的边界识别和解释方法 [J]. 石油地球物理勘探 , 2012 , 47 ( 5 ): 815 - 821, 844, 682 .
MA G Q , LI L L , DU X J . Boundary detection and interpretation by magnetic gradient tensor data [J]. Oil Geophysical Prospecting , 2012 , 47 ( 5 ): 815 - 821, 844, 682 . (in Chinese)
DANIELA , GEROVSKA , . Determination of the parameters of compact Ferro-metallic objects with transforms of magnitude magnetic anomalies [J]. Journal of Applied Geophysics , 2004 , 55 ( 3/4 ): 173 - 186 . doi: 10.1016/j.jappgeo.2003.10.001 http://dx.doi.org/10.1016/j.jappgeo.2003.10.001
STAVREV P , GEROVSKA D . Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity [J]. Geophysical Prospecting , 2000 , 48 ( 2 ): 317 - 340 . doi: 10.1046/j.1365-2478.2000.00188.x http://dx.doi.org/10.1046/j.1365-2478.2000.00188.x
ZHANG J , MA W , LIN J , et al .. Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence [J]. Measurement , 2015 , 59 : 73 - 87 . doi: 10.1016/j.measurement.2014.09.045 http://dx.doi.org/10.1016/j.measurement.2014.09.045
孙世政 , 于竞童 , 韩宇 , 等 . 基于SSA-ELM的双层十字梁结构光纤布拉格光栅传感器三维力解耦 [J]. 光学 精密工程 , 2022 , 30 ( 3 ): 274 - 285 . doi: 10.37188/OPE.2021.0549 http://dx.doi.org/10.37188/OPE.2021.0549
SUN S Z , YU J T , HAN Y , et al . FBG sensor of double-layer cross beam structure based on SSA-ELM three-dimensional force decoupling [J]. Opt. Precision Eng. , 2022 , 30 ( 3 ): 274 - 285 . (in Chinese) . doi: 10.37188/OPE.2021.0549 http://dx.doi.org/10.37188/OPE.2021.0549
YANLONG , ZHU , . Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm [J]. International Journal of Hydrogen Energy , 2021 , 46 ( 14 ): 9541 - 9552 . doi: 10.1016/j.ijhydene.2020.12.107 http://dx.doi.org/10.1016/j.ijhydene.2020.12.107
CHENGLONG , ZHANG , . A stochastic configuration network based on chaotic sparrow search algorithm [J]. Knowledge-Based Systems , 2021 , 220 : 106924 . doi: 10.1016/j.knosys.2021.106924 http://dx.doi.org/10.1016/j.knosys.2021.106924
马飞燕 , 李向新 . 基于改进麻雀搜索算法-核极限学习机耦合算法的滑坡位移预测模型 [J]. 科学技术与工程 , 2022 , 22 ( 5 ): 1786 - 1793 . doi: 10.3969/j.issn.1671-1815.2022.05.008 http://dx.doi.org/10.3969/j.issn.1671-1815.2022.05.008
MA F Y , LI X X . Landslide displacement prediction model using improved SSA-KELM coupling algorithm [J]. Science Technology and Engineering , 2022 , 22 ( 5 ): 1786 - 1793 . (in Chinese) . doi: 10.3969/j.issn.1671-1815.2022.05.008 http://dx.doi.org/10.3969/j.issn.1671-1815.2022.05.008
0
Views
937
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution