浏览全部资源
扫码关注微信
天津大学 微电子学院,天津 300072
Received:05 July 2022,
Revised:17 October 2022,
Published:25 April 2023
移动端阅览
杨雪,梁煜,张为等.应用于反射式编码器的光电集成芯片设计[J].光学精密工程,2023,31(08):1136-1149.
YANG Xue,LIANG Yu,ZHANG Wei,et al.Design of an optoelectronic integrated chip for reflective encoder application[J].Optics and Precision Engineering,2023,31(08):1136-1149.
杨雪,梁煜,张为等.应用于反射式编码器的光电集成芯片设计[J].光学精密工程,2023,31(08):1136-1149. DOI: 10.37188/OPE.20233108.1136.
YANG Xue,LIANG Yu,ZHANG Wei,et al.Design of an optoelectronic integrated chip for reflective encoder application[J].Optics and Precision Engineering,2023,31(08):1136-1149. DOI: 10.37188/OPE.20233108.1136.
为满足反射式光电编码器的应用需求,设计一款集成光电二极管阵列、跨阻放大器、全差分放大器以及偏置电路的光电芯片。首先,根据反射式编码器的成像原理设计光电二极管阵列。然后,设计可调增益跨阻放大器、全差分驱动放大器级联作为增量信号处理链路,降低读出信号的噪声同时提高带负载能力。接着,集成具有宽电源电压输入范围以及较好的电源纹波抑制能力的偏置电路。基于0.35 μm光电CMOS工艺进行流片,通过搭建测试环境,光电集成芯片可以在3.5~6 V宽电源电压范围内正常工作,且在电机转速6 000 r/min内输出的增量信号正交性良好。角度测量结果表明,正反转情况下角度测量误差最大值分别为4.752″和5.04″。在5 V供电电压下电路的直流功耗为66.5 mW,整体芯片面积为5.91 mm×2.81 mm。能够满足光电芯片高度集成化、较好的信号正交性、宽电源电压输入范围、高电源纹波抑制能力等要求,适用于反射式光电编码器。
This study designed an optoelectronic chip, integrating a photodiode array, transimpedance amplifier, fully differential amplifier, and bias circuit, to meet the application requirements of reflective photoelectric encoders. First, the photodiode array was designed according to the imaging principle of the reflective encoder. The adjustable gain transimpedance amplifier and the fully differential driver amplifier were then cascaded. Regarding the signal processing circuit, it could increase load capacity in addition to reducing the noise of the readout signal. Subsequently, the design integrated the bias circuit to provide a wide power supply voltage input range and effective power supply ripple rejection. The whole chip was fabricated based on a 0.35-um photoelectric CMOS process. By building a test environment, the photoelectric chip can work normally in the wide power supply voltage range of 3.5-6 V, and the incremental signal output within 6000 r/min has good orthogonality. The results of angle measurement showed that the maximum error of angle measurement is 4.752″ and 5.04″ under forward and reverse rotations, respectively. Using a 5 V supply voltage, the DC power consumption of the circuit is 66.5 mW. The overall chip area is 5.91 mm×2.81 mm. In general, the proposed optoelectronic chip can meet the requirements of high integration of photoelectric chips, good signal orthogonality, wide power supply voltage input range, and high power supply ripple suppression ability. Therefore, it is suitable for reflective photoelectric encoders.
MANCINI D , CASCONE E , SCHIPANI P . Galileo high-resolution encoder system [J]. Telescope Control Systems II , 1997 , 3112 : 328 - 334 . doi: 10.1117/12.284230 http://dx.doi.org/10.1117/12.284230
TRESANCHEZ M , PALLEJA T , TEIXIDO M , et al . Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder [J]. Sensors and Actuators A: Physical , 2010 , 157 ( 1 ): 161 - 167 . doi: 10.1016/j.sna.2009.11.002 http://dx.doi.org/10.1016/j.sna.2009.11.002
BOŠNAK M , KLANČAR G . Fast and reliable alternative to encoder-based measurements of multiple 2-DOF rotary-linear transformable objects using a network of image sensors with application to table football [J]. Sensors (Basel, Switzerland) , 2020 , 20 ( 12 ): 3552 . doi: 10.3390/s20123552 http://dx.doi.org/10.3390/s20123552
MILJKOVIC G S , DENIC D B . Redundant and flexible pseudorandom optical rotary encoder [J]. Elektronika Ir Elektrotechnika , 2020 , 26 ( 6 ): 10 - 16 . doi: 10.5755/j01.eie.26.6.25476 http://dx.doi.org/10.5755/j01.eie.26.6.25476
KAO C F , LU S H . Reflective-type optical encoder based on fractional talbot self-image effect using phase grating [C]. Proc SPIE 7544, Sixth International Symposium on Precision Engineering Measurements and Instrumentation , 2010 , 7544 : 156 - 161 . doi: 10.1117/12.886238 http://dx.doi.org/10.1117/12.886238
NAKAMURA Y , TAKEDA H , SHIJO D , et al . Reflective optical encoder , motor , and reflective optical encoder manufacturing method: US20210270 641 [P]. 2021-09-02 .
WANG H J , CHAN T E . Optical reflective component and optical encoder using same : US20210063 207 [P]. 2021-03-04 .
YE G Y , LIU H ZH , BAN Y W , et al . Development of a reflective optical encoder with submicron accuracy [J]. Optics Communications , 2018 , 411 : 126 - 132 . doi: 10.1016/j.optcom.2017.10.032 http://dx.doi.org/10.1016/j.optcom.2017.10.032
王显军 . 基于SOC单片机的高集成度光电编码器电路设计 [J]. 光学 精密工程 , 2011 , 19 ( 5 ): 1082 - 1087 . doi: 10.3788/ope.20111905.1088 http://dx.doi.org/10.3788/ope.20111905.1088
WANG X J . Circuit design for high integrated photoelectric encoder base on SOC singlechip [J]. Opt. Precision Eng. , 2011 , 19 ( 5 ): 1082 - 1087 . (in Chinese) . doi: 10.3788/ope.20111905.1088 http://dx.doi.org/10.3788/ope.20111905.1088
王显军 . 反射式光电编码器 [J]. 光学 精密工程 , 2013 , 21 ( 12 ): 3066 - 3071 . doi: 10.3788/ope.20132112.3066 http://dx.doi.org/10.3788/ope.20132112.3066
WANG X J . Reflection photoelectric encoder [J]. Opt. Precision Eng. , 2013 , 21 ( 12 ): 3066 - 3071 . (in Chinese) . doi: 10.3788/ope.20132112.3066 http://dx.doi.org/10.3788/ope.20132112.3066
孙莹 , 万秋华 , 王树洁 , 等 . 航天级光电编码器的信号处理系统设计 [J]. 光学 精密工程 , 2010 , 18 ( 5 ): 1182 - 1188 .
SUN Y , WAN Q H , WANG S J , et al . Design of signal process system for spaceborne photoelectric encoder [J]. Opt. Precision Eng. , 2010 , 18 ( 5 ): 1182 - 1188 . (in Chinese)
韩庆阳 , 陈赟 , 张红胜 , 等 . 航天级反射式光电编码器信号处理系统设计 [J]. 红外与激光工程 , 2019 , 48 ( S1 ): 141 - 146 . doi: 10.3788/IRLA201948.S117010 http://dx.doi.org/10.3788/IRLA201948.S117010
HAN Q Y , CHEN Y , ZHANG H S , et al . Design of signal processing system for spaceborne reflection photoelectric encoder [J]. Infrared and Laser Engineering , 2019 , 48 ( S1 ): 141 - 146 . (in Chinese) . doi: 10.3788/IRLA201948.S117010 http://dx.doi.org/10.3788/IRLA201948.S117010
王宁 , 赵柏秦 , 王帅 , 等 . PIN探测器和跨阻放大器的光电单片集成 [J]. 红外与激光工程 , 2021 , 50 ( 9 ): 307 - 312 .
WANG N , ZHAO B Q , WANG S , et al . Photoelectric monolithic integration of PIN detector and transimpedance amplifier [J]. Infrared and Laser Engineering , 2021 , 50 ( 9 ): 307 - 312 . (in Chinese)
谭朝文 . 光电子集成电路进展 [J]. 半导体光电 , 2000 , 21 ( S1 ): 14 - 18 . doi: 10.3969/j.issn.1001-5868.2000.z1.004 http://dx.doi.org/10.3969/j.issn.1001-5868.2000.z1.004
TAN C W . Recent advances in optoelectronic integrated circuits [J]. Semiconductor Optoelectronics , 2000 , 21 ( S1 ): 14 - 18 . (in Chinese) . doi: 10.3969/j.issn.1001-5868.2000.z1.004 http://dx.doi.org/10.3969/j.issn.1001-5868.2000.z1.004
LEONARD M . Push-pull optical detector integrated circuit [J]. IEEE Journal of Solid-State Circuits , 1980 , 15 ( 6 ): 1087 - 1089 . doi: 10.1109/jssc.1980.1051521 http://dx.doi.org/10.1109/jssc.1980.1051521
CARR J , DESMULLIEZ M Y P , WESTON N , et al . Miniaturised optical encoder for ultra precision metrology systems [J]. Precision Engineering , 2009 , 33 ( 3 ): 263 - 267 . doi: 10.1016/j.precisioneng.2008.07.003 http://dx.doi.org/10.1016/j.precisioneng.2008.07.003
SEYBOLD J , BÜLAU A , FRITZ K P , et al . Miniaturized optical encoder with micro structured encoder disc [J]. Applied Sciences , 2019 , 9 ( 3 ): 452 . doi: 10.3390/app9030452 http://dx.doi.org/10.3390/app9030452
CHEN Y S , HSU T H , CHEN G C , et al . A monolithic optical encoder using CMOS image sensor with background light cancellation [C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 1214,2020 , Seville, Spain. IEEE , 2020 : 1 - 4 . doi: 10.1109/iscas45731.2020.9181039 http://dx.doi.org/10.1109/iscas45731.2020.9181039
CHEN Y S , HSU T H , CHEN C W , et al . A Current-Mode Differential Sensing CMOS Imager for Optical Linear Encoder [C]. 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). 2225,2019 , Hsinchu, Taiwan, China. IEEE , 2019 : 1 - 2 . doi: 10.1109/vlsi-dat.2019.8741649 http://dx.doi.org/10.1109/vlsi-dat.2019.8741649
MU Y S , DING N , MA Y , et al . An optoelectronic chip with excellent orthogonality for encoder application [C]. 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). 36,2020 , Kunming, China. IEEE , 2020 : 1 - 3 . doi: 10.1109/icsict49897.2020.9278215 http://dx.doi.org/10.1109/icsict49897.2020.9278215
JIANG J , DAI J , YANG S , et al . A 22-bit image encoder with optoelectronic integrated chip [J]. Optics Communications , 2022 , 512 : 128022 . doi: 10.1016/j.optcom.2022.128022 http://dx.doi.org/10.1016/j.optcom.2022.128022
MU Y S , JIANG J Q , DING N , et al . A 7.4 kHz, 20-bit image encoder with a CMOS linear image sensor [J]. Optical and Quantum Electronics , 2019 , 51 ( 10 ): 321 . doi: 10.1007/s11082-019-2037-z http://dx.doi.org/10.1007/s11082-019-2037-z
ARGUEL P , VALENTIN J , FOURMENT S , et al . A monolithic optical phase-shift detector on silicon [J]. IEEE Sensors Journal , 2005 , 5 ( 6 ): 1305 - 1309 . doi: 10.1109/jsen.2005.858945 http://dx.doi.org/10.1109/jsen.2005.858945
LEE C H , HUANG H J , CHANG J P , et al . Incremental optical encoder based on a sinusoidal transmissive pattern [J]. IEEE Photonics Journal , 2021 , 14 ( 1 ): 1 - 6 . doi: 10.1109/jphot.2021.3129820 http://dx.doi.org/10.1109/jphot.2021.3129820
HOGERVORST R , TERO J P , ESCHAUZIER R G H , et al . A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries [J]. IEEE Journal of Solid-State Circuits , 1994 , 29 ( 12 ): 1505 - 1513 . doi: 10.1109/4.340424 http://dx.doi.org/10.1109/4.340424
吴瑞林 , 王建中 , 袁克海 . 多分格相关与皮尔逊相关的蒙特卡罗仿真 [J]. 北京航空航天大学学报 , 2009 , 35 ( 12 ): 1507 - 1510, 1515 .
WU R L , WANG J ZH , YUAN K H . Monte Carlo simulation of polychoric correlation and Pearson correlation coefficient [J]. Journal of Beijing University of Aeronautics and Astronautics , 2009 , 35 ( 12 ): 1507 - 1510, 1515 . (in Chinese)
0
Views
1894
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution