浏览全部资源
扫码关注微信
1.内蒙古科技大学 信息工程学院,内蒙古 包头 014010
2.内蒙古工业大学,内蒙古 呼和浩特 010051
Received:13 September 2022,
Revised:30 October 2022,
Published:25 April 2023
移动端阅览
贾梦瑜,张继凯,马茹等.基于人体骨架信息的行人再识别研究综述[J].光学精密工程,2023,31(08):1228-1243.
JIA Mengyu,ZHANG Jikai,MA Ru,et al.Survey of person re-identification based on human skeleton information[J].Optics and Precision Engineering,2023,31(08):1228-1243.
贾梦瑜,张继凯,马茹等.基于人体骨架信息的行人再识别研究综述[J].光学精密工程,2023,31(08):1228-1243. DOI: 10.37188/OPE.20233108.1228.
JIA Mengyu,ZHANG Jikai,MA Ru,et al.Survey of person re-identification based on human skeleton information[J].Optics and Precision Engineering,2023,31(08):1228-1243. DOI: 10.37188/OPE.20233108.1228.
行人再识别的主要任务是利用计算机视觉从不同的摄像机中检索出相同身份的人,对特定的行人进行匹配和检索,此研究可以广泛应用于智能视频监控、智能安保等领域。相比于其他易受改变的人体外观特征,提取人的骨架信息作为鉴别特征更具有鲁棒性。为了了解该领域的发展现状,辅助该领域的研究者们进行更深入的探索,本文重点研究了基于人体骨架信息的行人再识别方法,根据算法包含的特征信息,将其分为独立式和混合式,混合式除人体骨架信息外还分别包括RGB-D图像特征和步态特征,之后对不同方法进行了比较,其次在主要数据集上对不同方法进行了评估,最后对此研究的问题与挑战进行了总结并对未来发展趋势进行了展望。
The goal of person re-identification, a computer vision task, is to accurately match individuals across different camera views in a multi-camera surveillance system. This has broad applications in intelligent video surveillance, security, and other fields. Human skeleton information is a more robust discriminative feature compared to other human appearance features that can be easily changed. This paper primarily focuses on a pedestrian recognition method based on human body skeleton information to gain a deeper understanding of the current status of development in this field and assist researchers in further exploration. The proposed algorithm can be divided into independent and hybrid subtypes, where the hybrid subtype also includes RGB-D image and gait features in addition to the human body skeleton information. The different subtypes of the algorithm are subsequently compared and evaluated on established datasets. Finally, the problems and challenges of this study are summarized, and future development trends are proposed.
WANG H B , DU H M , ZHAO Y , et al . A comprehensive overview of person re-identification approaches [J]. IEEE Access , 2020 , 8 : 45556 - 45583 . doi: 10.1109/access.2020.2978344 http://dx.doi.org/10.1109/access.2020.2978344
卢健 , 陈旭 , 罗毛欣 , 等 . 深度学习行人再识别研究综述 [J]. 激光与光电子学进展 , 2020 , 57 ( 16 ): 37 - 54 . doi: 10.3788/lop57.160003 http://dx.doi.org/10.3788/lop57.160003
LU J , CHEN X , LUO M X , et al . Person re-identification research via deep learning [J]. Laser & Optoelectronics Progress , 2020 , 57 ( 16 ): 37 - 54 . (in Chinese) . doi: 10.3788/lop57.160003 http://dx.doi.org/10.3788/lop57.160003
LIU K , MA B P , ZHANG W , et al . A Spatio-temporal appearance representation for video-based pedestrian re-identification [C]. 2015 IEEE International Conference on Computer Vision (ICCV). 713,2015 , Santiago, Chile. IEEE , 2016 : 3810 - 3818 . doi: 10.1109/iccv.2015.434 http://dx.doi.org/10.1109/iccv.2015.434
WU C , GE W , WU A , et al . Camera-conditioned stable feature generation for isolated camera supervised person re-identification [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022 : 20238 - 20248 . doi: 10.1109/cvpr52688.2022.01960 http://dx.doi.org/10.1109/cvpr52688.2022.01960
QIN Z , HE W , DENG F H , et al . SRPRID: pedestrian re-identification based on super-resolution images [J]. IEEE Access , 2019 , 7 : 152891 - 152899 . doi: 10.1109/access.2019.2948260 http://dx.doi.org/10.1109/access.2019.2948260
YE M , SHEN J B , LIN G J , et al . Deep learning for person re-identification: a survey and outlook [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022 , 44 ( 6 ): 2872 - 2893 . doi: 10.1109/tpami.2021.3054775 http://dx.doi.org/10.1109/tpami.2021.3054775
ZHENG L , HUANG Y J , LU H C , et al . Pose-invariant embedding for deep person re-identification [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 9 ): 4500 - 4509 . doi: 10.1109/tip.2019.2910414 http://dx.doi.org/10.1109/tip.2019.2910414
LI Y Y , YANG Z C , CHEN Y Q , et al . Occluded person re-identification method based on multiscale features and human feature reconstruction [J]. IEEE Access , 2022 , 10 : 98584 - 98592 . doi: 10.1109/access.2022.3203706 http://dx.doi.org/10.1109/access.2022.3203706
张继凯 , 李琦 , 王月明 , 等 . 基于单目RGB图像的三维手势跟踪算法综述 [J]. 计算机科学 , 2022 , 49 ( 4 ): 174 - 187 . doi: 10.11896/jsjkx.210700084 http://dx.doi.org/10.11896/jsjkx.210700084
ZHANG J K , LI Q , WANG Y M , et al . Survey of 3D gesture tracking algorithms based on monocular RGB images [J]. Computer Science , 2022 , 49 ( 4 ): 174 - 187 . (in Chinese) . doi: 10.11896/jsjkx.210700084 http://dx.doi.org/10.11896/jsjkx.210700084
GIACHETTI A , FORNASA F , PAREZZAN F , et al . Shrec'16 Track: retrieval of human subjects from depth sensor data [C]. Eurographics Workshop on 3D Object Retrieval . 2016 : 1 - 6 .
CAO M F , HASHIMOTO H . Specific person recognition and tracking of mobile robot with kinect 3D sensor [C]. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society . 1013,2013 , Vienna, Austria . IEEE , 2014 : 8323 - 8328 . doi: 10.1109/iecon.2013.6700527 http://dx.doi.org/10.1109/iecon.2013.6700527
MUNARO M , GHIDONI S , DIZMEN D T , et al . A feature-based approach to people re-identification using skeleton keypoints [C]. 2014 IEEE International Conference on Robotics and Automation (ICRA). 317,2014 , Hong Kong, China. IEEE , 2014 : 5644 - 5651 . doi: 10.1109/icra.2014.6907689 http://dx.doi.org/10.1109/icra.2014.6907689
HU X Q , WEI D , WANG Z Y , et al . Hypergraph video pedestrian re-identification based on posture structure relationship and action constraints [J]. Pattern Recognition , 2021 , 111 : 107688 . doi: 10.1016/j.patcog.2020.107688 http://dx.doi.org/10.1016/j.patcog.2020.107688
ZHAO H Y , TIAN M Q , SUN S Y , et al . Spindle Net: person re-identification with human body region guided feature decomposition and fusion [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 907 - 915 . doi: 10.1109/cvpr.2017.103 http://dx.doi.org/10.1109/cvpr.2017.103
WEI L H , ZHANG S L , YAO H T , et al . GLAD: global-local-alignment descriptor for pedestrian retrieval [C]. Proceedings of the 25th ACM international conference on Multimedia. 2327,2017 , Mountain View, California, USA. New York : ACM , 2017 : 420 - 428 . doi: 10.1145/3123266.3123279 http://dx.doi.org/10.1145/3123266.3123279
LIANG G Q , LAN X G , CHEN X Y , et al . Cross-view person identification based on confidence-weighted human pose matching [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 8 ): 3821 - 3835 . doi: 10.1109/tip.2019.2899782 http://dx.doi.org/10.1109/tip.2019.2899782
ZHU H , KE W , LI D , et al . Dual cross-attention learning for fine-grained visual categorization and object re-identification [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . 2022 : 4692 - 4702 . doi: 10.1109/cvpr52688.2022.00465 http://dx.doi.org/10.1109/cvpr52688.2022.00465
WANG Z Y , WEI D , HU X Q , et.al . Human skeleton mutual learning for person re-identification [J]. Neurocomputing , 2020 , 388 : 309 - 323 . doi: 10.1016/j.neucom.2019.12.120 http://dx.doi.org/10.1016/j.neucom.2019.12.120
ELAOUD A , BARHOUMI W , DRIRA H , et al . Analysis of skeletal shape trajectories for person re-identification [C]. International Conference on Advanced Concepts for Intelligent Vision Systems . Springer , Cham , 2017 : 138 - 149 . doi: 10.1007/978-3-319-70353-4_12 http://dx.doi.org/10.1007/978-3-319-70353-4_12
ELAOUD A , BARHOUMI W , DRIRA H , et al . Person re-identification from different views based on dynamic linear combination of distances [J]. Multimedia Tools and Applications , 2021 , 80 : 17685 - 17704 . doi: 10.1007/s11042-021-10588-7 http://dx.doi.org/10.1007/s11042-021-10588-7
RAO H , XU S , HU X , et al . Multi-Level Graph Encoding with Structural-Collaborative Relation Learning for Skeleton-Based Person Re-Identification [EB/OL]. 2021 : arXiv : 2106 . 03069 . https://arxiv.org/abs/2106.03069 https://arxiv.org/abs/2106.03069 . doi: 10.24963/ijcai.2021/135 http://dx.doi.org/10.24963/ijcai.2021/135
KWON B , LEE S . Human skeleton data augmentation for person identification over deep neural network [J]. Applied Sciences , 2020 , 10 ( 14 ): 4849 . doi: 10.3390/app10144849 http://dx.doi.org/10.3390/app10144849
RAO H C , MIAO C . SimMC: simple masked contrastive learning of skeleton representations for unsupervised person re-identification [J]. arXiv preprint arXiv :2204 . 09826 , 2022 . doi: 10.24963/ijcai.2022/180 http://dx.doi.org/10.24963/ijcai.2022/180
YU T , JIN H M , TAN W T , et al . SKEPRID: pose and illumination change-resistant skeleton-based person re-identification [J]. ACM Transactions on Multimedia Computing, Communications, and Applications , 2018 , 14 ( 4 ): 1 - 24 . doi: 10.1145/3243217 http://dx.doi.org/10.1145/3243217
PALA F , SATTA R , FUMERA G , et al . Multimodal person reidentification using RGB-D cameras [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2016 , 26 ( 4 ): 788 - 799 . doi: 10.1109/tcsvt.2015.2424056 http://dx.doi.org/10.1109/tcsvt.2015.2424056
LIU H , HU L , MA L . Online RGB-D person re-identification based on metric model update [J]. CAAI Transactions on Intelligence Technology , 2017 ( 1 ): 48 - 55 . (in Chinese) . doi: 10.1016/j.trit.2017.04.001 http://dx.doi.org/10.1016/j.trit.2017.04.001
PATRUNO C , MARANI R , CICIRELLI G , et al . People re-identification using skeleton standard posture and color descriptors from RGB-D data [J]. Pattern Recognition , 2019 , 89 : 77 - 90 . doi: 10.1016/j.patcog.2019.01.003 http://dx.doi.org/10.1016/j.patcog.2019.01.003
ICIOTTI D , PAOLANTI M , FRONTONI E , et al . Person Re-identification Dataset with RGB-D Camera in a Top-View Configuration [M]. Video Analytics. Face and Facial Expression Recognition and Audience Measurement . Springer , Cham , 2016 : 1 - 11 . doi: 10.1007/978-3-319-56687-0_1 http://dx.doi.org/10.1007/978-3-319-56687-0_1
BARBOSA I B , CRISTANI M , BUE A D , et al . Re-identification with RGB-D sensors [C]. European Conference on Computer Vision. Springer, Berlin, Heidelberg , 2012 : 433 - 442 . doi: 10.1007/978-3-642-33863-2_43 http://dx.doi.org/10.1007/978-3-642-33863-2_43
PALA P , SEIDENARI L , BERRETTI S , et al . Person re-identification from depth cameras using skeleton and 3D face data [C]. Proceedings of the 11th Eurographics Workshop on 3D Object Retrieval . New York : ACM , 2018 : 95 - 101 . doi: 10.1016/j.cag.2019.01.003 http://dx.doi.org/10.1016/j.cag.2019.01.003
NANNI L , MUNARO M , GHIDONI S , et al . Ensemble of different approaches for a reliable person re-identification system [J]. Applied Computing and Informatics , 2016 , 12 ( 2 ): 142 - 153 . doi: 10.1016/j.aci.2015.02.002 http://dx.doi.org/10.1016/j.aci.2015.02.002
GHARGHABI S , SHAMSHIRDAR F , SHANGARI T A , et al . People re-identification using 3D descriptor with skeleton information [C]. 2015 International Conference on Informatics , Electronics & Vision (ICIEV). 1518,2015 , Fukuoka, Japan. IEEE , 2015 : 1 - 5 . doi: 10.1109/iciev.2015.7333986 http://dx.doi.org/10.1109/iciev.2015.7333986
MUNARO M , FOSSATI A , BASSO A , et al . One-shot Person Re-identification with a Consumer Depth Camera [M]. Person Re-Identification. Springer , London , 2014 : 161 - 181 . doi: 10.1007/978-1-4471-6296-4_8 http://dx.doi.org/10.1007/978-1-4471-6296-4_8
PALA P , SEIDENARI L , BERRETTI S , et al . Enhanced skeleton and face 3D data for person re-identification from depth cameras [J]. Computers & Graphics , 2019 , 79 : 69 - 80 . doi: 10.1016/j.cag.2019.01.003 http://dx.doi.org/10.1016/j.cag.2019.01.003
WU A C , ZHENG W S , LAI J H . Robust depth-based person re-identification [J]. IEEE Transactions on Image Processing , 2017 , 26 ( 6 ): 2588 - 2603 . doi: 10.1109/tip.2017.2675201 http://dx.doi.org/10.1109/tip.2017.2675201
MUNARO M , BASSO A , FOSSATI A , et al . 3D reconstruction of freely moving persons for re-identification with a depth sensor [C]. 2014 IEEE international conference on robotics and automation (ICRA) . IEEE , 2014 : 4512 - 4519 . doi: 10.1109/icra.2014.6907518 http://dx.doi.org/10.1109/icra.2014.6907518
IMANI Z , SOLTANIZADEH H . Histogram of the node strength and histogram of the edge weight: two new features for RGB-D person re-identification [J]. Science China (Information Sciences) , 2018 , 61 ( 9 ): 112 - 125 . doi: 10.1007/s11432-016-9086-8 http://dx.doi.org/10.1007/s11432-016-9086-8
IMANI Z , SOLTANIZADEH H . Person reidentification using local pattern descriptors and anthropometric measures from videos of kinect sensor [J]. IEEE Sensors Journal , 2016 , 16 ( 16 ): 6227 - 6238 . doi: 10.1109/jsen.2016.2579645 http://dx.doi.org/10.1109/jsen.2016.2579645
IMANI Z , SOLTANIZADEH H . Local binary pattern, local derivative pattern and skeleton features for RGB-D person re-identification [J]. National Academy Science Letters , 2019 , 42 ( 3 ): 233 - 238 . doi: 10.1007/s40009-018-0736-9 http://dx.doi.org/10.1007/s40009-018-0736-9
IMANI Z , SOLTANIZADEH H , OROUJI A A . Tensor-based sparse canonical correlation analysis via low rank matrix approximation for RGB-D long-term person re-identification [J]. Multimedia Tools and Applications , 2020 , 79(prepublish): 1- 25 . doi: 10.1007/s11042-019-08311-8 http://dx.doi.org/10.1007/s11042-019-08311-8
MOGELMOSE A , BAHNSEN C , MOESLUND T B , et al . Tri-Modal person re-identification with RGB, depth and thermal features [C]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops . New York : ACM , 2013 : 301 - 307 . doi: 10.1109/cvprw.2013.52 http://dx.doi.org/10.1109/cvprw.2013.52
WANG Y H , WANG T W , YEN J Y , et al . Dynamic human object recognition by combining color and depth information with a clothing image histogram [J]. International Journal of Advanced Robotic Systems , 2019 , 16 ( 1 ): 172988141982810 . doi: 10.1177/1729881419828105 http://dx.doi.org/10.1177/1729881419828105
REN L , LU J , FENG J , et al . Multi-modal uniform deep learning for RGB-D person re-identification [J]. Pattern Recognition , 2017 , 72 : 446 - 457 . doi: 10.1016/j.patcog.2017.06.037 http://dx.doi.org/10.1016/j.patcog.2017.06.037
IMANI Z , SOLTANIZADEH H , OROUJI A A . Short-term person re-identification using RGB, depth and skeleton information of RGB-D sensors [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering , 2019 , 44(prepublish): 1- 13 . doi: 10.1007/s40998-019-00249-9 http://dx.doi.org/10.1007/s40998-019-00249-9
UDDIN M K , BHUIYAN A , HASAN M . Fusion in dissimilarity space between RGB D and skeleton for person Re identification [J]. International Journal of Innovative Technology and Exploring Engineering , 2021 , 10 ( 12 ): 69 - 75 . doi: 10.35940/ijitee.l9566.10101221 http://dx.doi.org/10.35940/ijitee.l9566.10101221
JIANG H , ZHANG L . Person Re-identification Based on Body Segmentation [M]. Communications in Computer and Information Science . Singapore : Springer Singapore , 2017 : 474 - 485 . doi: 10.1007/978-981-10-7302-1_39 http://dx.doi.org/10.1007/978-981-10-7302-1_39
周明全 , 杨稳 , 林芃樾 , 等 . 基于最小二乘正则相关性分析的颅骨身份识别 [J]. 光学 精密工程 , 2021 , 29 ( 1 ): 201 - 210 . doi: 10.37188/OPE.20212901.0201 http://dx.doi.org/10.37188/OPE.20212901.0201
ZHOU M Q , YANG W , LIN P Y , et al . Skull identification based on least square canonical correlation analysis [J]. Opt. Precision Eng. , 2021 , 29 ( 1 ): 201 - 210 . (in Chinese) . doi: 10.37188/OPE.20212901.0201 http://dx.doi.org/10.37188/OPE.20212901.0201
FAN C , PENG Y J , CAO C S , et al . GaitPart: temporal part-based model for gait recognition [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 14213 - 14221 . doi: 10.1109/cvpr42600.2020.01423 http://dx.doi.org/10.1109/cvpr42600.2020.01423
LU X Y , LI X D , SHENG W J , et al . Long-term person re-identification based on appearance and gait feature fusion under covariate changes [J]. Processes , 2022 , 10 ( 4 ): 770 . doi: 10.3390/pr10040770 http://dx.doi.org/10.3390/pr10040770
LI N , ZHAO X . A Benchmark for Gait Recognition Under Occlusion Collected by Multi-Kinect SDAS [EB/OL]. 2021 : arXiv : 2107 . 08990 . https://arxiv.org/abs/2107.08990 https://arxiv.org/abs/2107.08990
CHOI S , KIM J , KIM W , et al . Skeleton-based gait recognition via robust frame-level matching [J]. IEEE Transactions on Information Forensics and Security , 2019 , 14 ( 10 ): 2577 - 2592 . doi: 10.1109/tifs.2019.2901823 http://dx.doi.org/10.1109/tifs.2019.2901823
周倩 , 孙运强 , 姚爱琴 , 等 . 基于人体关节点定位的步态识别技术研究 [J]. 国外电子测量技术 , 2019 , 38 ( 1 ): 52 - 56 .
ZHOU Q , SUN Y Q , YAO A Q , et al . Research on gait recognition technology based on human joints location [J]. Foreign Electronic Measurement Technology , 2019 , 38 ( 1 ): 52 - 56 . (in Chinese)
WANG L , CHEN J . A two-branch neural network for gait recognition [J]. arXiv preprint arXiv: 2202.10645 , 2022 .
PENG Y , MA K , ZHANG Y , et al . Learning Rich Features for Gait Recognition by Integrating Skeletons and Silhouette s [EB/OL]. 2021 : arXiv : 2110 . 13408 . https://arxiv.org/abs/2110.13408 https://arxiv.org/abs/2110.13408
LIU Y , JIANG X H , SUN T F , et al . 3D gait recognition based on a CNN-LSTM network with the fusion of SkeGEI and DA features [C]. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 1821,2019 , Taipei, China. IEEE , 2019 : 1 - 8 . doi: 10.1109/avss.2019.8909881 http://dx.doi.org/10.1109/avss.2019.8909881
HAN J , BHANU B . Individual recognition using gait energy image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2006 , 28 ( 2 ): 316 - 322 . doi: 10.1109/tpami.2006.38 http://dx.doi.org/10.1109/tpami.2006.38
LIU J Y , ZHENG N N . Gait history image: a novel temporal template for gait recognition [C]. 2007 IEEE International Conference on Multimedia and Expo . 25,2007 , Beijing, China . IEEE , 2007 : 663 - 666 . doi: 10.1109/icme.2007.4284737 http://dx.doi.org/10.1109/icme.2007.4284737
YAO L , KUSAKUNNIRAN W , WU Q , et al . Robust gait recognition using hybrid descriptors based on Skeleton Gait Energy Image [J]. Pattern Recognition Letters , 2021 , 150 : 289 - 296 . doi: 10.1016/j.patrec.2019.05.012 http://dx.doi.org/10.1016/j.patrec.2019.05.012
LI N , ZHAO X B . A strong and robust skeleton-based gait recognition method with gait periodicity priors [J]. IEEE Transactions on Multimedia , 2022 , 99 : 1 . doi: 10.1109/tmm.2022.3154609 http://dx.doi.org/10.1109/tmm.2022.3154609
LIAO R J , YU S Q , AN W Z , et al . A model-based gait recognition method with body pose and human prior knowledge [J]. Pattern Recognition , 2020 , 98 : 107069 . doi: 10.1016/j.patcog.2019.107069 http://dx.doi.org/10.1016/j.patcog.2019.107069
MING D , ZHANG C , BAI Y R , et al . Gait recognition based on multiple views fusion of wavelet descriptor and human skeleton model [C]. 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems . 1113,2009 , Hong Kong , China . IEEE , 2009 : 246 - 249 . doi: 10.1109/vecims.2009.5068902 http://dx.doi.org/10.1109/vecims.2009.5068902
LIAO R J , CAO C S , GARCIA E B , et al . Pose-Based Temporal-Spatial Network ( PTSN ) for Gait Recognition with Carrying and Clothing Variations [M]. Biometric Recognition . Cham : Springer International Publishing , 2017 : 474 - 483 . doi: 10.1007/978-3-319-69923-3_51 http://dx.doi.org/10.1007/978-3-319-69923-3_51
XU K , JIANG X H , SUN T F . Gait identification based on human skeleton with pairwise graph convolutional network [C]. 2021 IEEE International Conference on Multimedia and Expo (ICME). 59,2021 , Shenzhen, China. IEEE , 2021 : 1 - 6 . doi: 10.1109/icme51207.2021.9428123 http://dx.doi.org/10.1109/icme51207.2021.9428123
SONG C , HUANG Y , HUANG Y , et al . GaitNet: an end-to-end network for gait based human identification [J]. Pattern Recognition , 2019 , 96 : 106988 . doi: 10.1016/j.patcog.2019.106988 http://dx.doi.org/10.1016/j.patcog.2019.106988
TEEPE T , KHAN A , GILG J , et al . Gaitgraph: graph convolutional network for skeleton-based gait recognition [C]. 2021 IEEE International Conference on Image Processing (ICIP). 1922,2021 , Anchorage, AK, USA. IEEE , 2021 : 2314 - 2318 . doi: 10.1109/icip42928.2021.9506717 http://dx.doi.org/10.1109/icip42928.2021.9506717
ZHENG X , LI X , XU K , et al . Gait Identification Under Surveillance Environment Based on Human Skeleton [EB/OL]. 2021 : arXiv : 2111 . 11720 . https://arxiv.org/abs/2111.11720 https://arxiv.org/abs/2111.11720
贾松敏 , 王丽佳 , 王爽 , 等 . 改进的步态光流图与视角相结合的身份识别 [J]. 光学 精密工程 , 2012 , 20 ( 11 ): 2500 - 2506 . doi: 10.3788/ope.20122011.2500 http://dx.doi.org/10.3788/ope.20122011.2500
JIA S M , WANG L J , WANG SH , et al . Personal identification combining modified gait flow image and view [J]. Opt. Precision Eng. , 2012 , 20 ( 11 ): 2500 - 2506 . (in Chinese) . doi: 10.3788/ope.20122011.2500 http://dx.doi.org/10.3788/ope.20122011.2500
ELHARROUSS O , ALMAADEED N , AL-MAADEED S , et al . Gait recognition for person re-identification [J]. The Journal of Supercomputing , 2020 , 77 ( 4 ): 1 - 20 . doi: 10.1007/s11227-020-03409-5 http://dx.doi.org/10.1007/s11227-020-03409-5
TOPHAM L K , KHAN W , AL-JUMEILY D , et al . Human body pose estimation for gait identification: a comprehensive survey of datasets and models [J]. ACM Computing Surveys , 2022 , 55 : 1 - 42 . doi: 10.1145/3533384 http://dx.doi.org/10.1145/3533384
RAO H , WANG S , HU X , et al . Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-identification [EB/OL]. 2020 : arXiv : 2008 . 09435 . https://arxiv.org/abs/2008.09435 https://arxiv.org/abs/2008.09435 . doi: 10.24963/ijcai.2020/125 http://dx.doi.org/10.24963/ijcai.2020/125
HUYNH-THE T , HUA CH , TU NA , et al . Learning 3D spatiotemporal gait feature by convolutional network for person identification [J]. Neurocomputing , 2020 , 397 : 192 - 202 . doi: 10.1016/j.neucom.2020.02.048 http://dx.doi.org/10.1016/j.neucom.2020.02.048
HAQUE A , ALAHI A , LI F F . Recurrent attention models for depth-based person identification [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1229 - 1238 . doi: 10.1109/cvpr.2016.138 http://dx.doi.org/10.1109/cvpr.2016.138
FENDRI E , CHTOUROU I , HAMMAMI M . Gait-based person re-identification under covariate factors [J]. Pattern Analysis and Applications , 2019 , 22 ( 4 ): 1629 - 1642 . doi: 10.1007/s10044-019-00793-4 http://dx.doi.org/10.1007/s10044-019-00793-4
SUN J D , WANG Y F , LI J , et al . View-invariant gait recognition based on kinect skeleton feature [J]. Multimedia Tools and Applications , 2018 , 77 ( 19 ): 24909 - 24935 . doi: 10.1007/s11042-018-5722-1 http://dx.doi.org/10.1007/s11042-018-5722-1
CHOI Y , NAPOLEAN Y , VAN GEMERT J C . The arm-swing is discriminative in video gait recognition for athlete re-identification [C]. 2021 IEEE International Conference on Image Processing (ICIP). 1922,2021 , Anchorage, AK, USA. IEEE , 2021 : 2309 - 2313 . doi: 10.1109/icip42928.2021.9506348 http://dx.doi.org/10.1109/icip42928.2021.9506348
LIU Z , ZHANG Z , WU Q , et al . Enhancing person re-identification by integrating gait biometric [J]. Neurocomputing , 2015 , 168 : 1144 - 1156 . doi: 10.1016/j.neucom.2015.05.008 http://dx.doi.org/10.1016/j.neucom.2015.05.008
NAMBIAR A , BERNARDINO A , NASCIMENTO J C , et al . Context-aware person re-identification in the wild via fusion of gait and anthropometric features [C]. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017 ). May 30 - June 3 , 2017, Washington, DC, USA. IEEE , 2017: 973 - 980 . doi: 10.1109/fg.2017.121 http://dx.doi.org/10.1109/fg.2017.121
ANDERSSON V O , ARAUJO R M . Person identification using anthropometric and gait data from kinect sensor [C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2530,2015 , Austin, Texas. New York : ACM , 2015 : 425 - 431 . doi: 10.1609/aaai.v29i1.9212 http://dx.doi.org/10.1609/aaai.v29i1.9212
YADAV A , VISHWAKARMA D K . Person Re-identification Using Deep Learning Networks : A Systematic Review [EB/OL]. 2020 : arXiv : 2012 . 13318 . https://arxiv.org/abs/2012.13318 https://arxiv.org/abs/2012.13318 . doi: 10.1109/spin.2019.8711617 http://dx.doi.org/10.1109/spin.2019.8711617
RASOOL RABAB A . Feature-level vs. score-level fusion in the human identification system [J]. Applied Computational Intelligence and Soft Computing , 2021 , 2021 : 1 - 10 . doi: 10.1155/2021/6621772 http://dx.doi.org/10.1155/2021/6621772
ZHANG X , RAI L . Multi-feature extraction and fusion method for pedestrian re-identification [C]. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). 1315,2020 , Shenzhen, China. IEEE , 2021 : 743 - 747 . doi: 10.1109/iceict51264.2020.9334218 http://dx.doi.org/10.1109/iceict51264.2020.9334218
LOPES A , SOUZA R , PEDRINI H . A Survey On RGB-D Datasets [EB/OL]. 2022 : arXiv : 2201 . 05761 . https://arxiv.org/abs/2201.05761 https://arxiv.org/abs/2201.05761 . doi: 10.1016/j.cviu.2022.103489 http://dx.doi.org/10.1016/j.cviu.2022.103489
DAMER N , OPEL A , NOUAK A . CMC curve properties and biometric source weighting in multi-biometric score-level fusion [C]. 17th International Conference on Information Fusion (FUSION). 710,2014 , Salamanca, Spain. IEEE , 2014 : 1 - 6 . doi: 10.1007/978-3-642-41939-3_7 http://dx.doi.org/10.1007/978-3-642-41939-3_7
WANG G A , YANG S , LIU H Y , et al . High-order information matters: learning relation and topology for occluded person re-identification [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 6448 - 6457 . doi: 10.1109/cvpr42600.2020.00648 http://dx.doi.org/10.1109/cvpr42600.2020.00648
孙刘杰 , 刘丽 , 王文举 . 多特征融合高通量dPCR荧光图像识别 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 928 - 937 . doi: 10.37188/OPE.20223008.0928 http://dx.doi.org/10.37188/OPE.20223008.0928
SUN L J , LIU L , WANG W J . Multi-feature fusion high-throughput dPCR fluorescence image recognition [J]. Opt. Precision Eng. , 2022 , 30 ( 8 ): 928 - 937 . (in Chinese) . doi: 10.37188/OPE.20223008.0928 http://dx.doi.org/10.37188/OPE.20223008.0928
YANG M X , HUANG Z Y , HU P , et al . Learning with twin noisy labels for visible-infrared person re-identification [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1824,2022 , New Orleans, LA, USA. IEEE , 2022 : 14288 - 14297 . doi: 10.1109/cvpr52688.2022.01391 http://dx.doi.org/10.1109/cvpr52688.2022.01391
CHO Y , KIM W J , HONG S , et al . Part-based pseudo label refinement for unsupervised person re-identification [C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1824,2022 , New Orleans, LA, USA. IEEE , 2022 : 7298 - 7308 . doi: 10.1109/cvpr52688.2022.00716 http://dx.doi.org/10.1109/cvpr52688.2022.00716
0
Views
713
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution