浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
3.中国科学院 空间光学系统在轨制造与集成重点实验室,吉林 长春130033
4.北京胜泰东方科技有限公司,北京 100024
Received:13 October 2022,
Revised:14 November 2022,
Published:10 May 2023
移动端阅览
李文雄,申军立,张星祥等.低温红外离轴三反准直系统设计[J].光学精密工程,2023,31(09):1285-1294.
LI Wenxiong,SHEN Junli,ZHANG Xingxiang,et al.Design of low temperature infrared off-axis three-mirror collimation system[J].Optics and Precision Engineering,2023,31(09):1285-1294.
李文雄,申军立,张星祥等.低温红外离轴三反准直系统设计[J].光学精密工程,2023,31(09):1285-1294. DOI: 10.37188/OPE.20233109.1285.
LI Wenxiong,SHEN Junli,ZHANG Xingxiang,et al.Design of low temperature infrared off-axis three-mirror collimation system[J].Optics and Precision Engineering,2023,31(09):1285-1294. DOI: 10.37188/OPE.20233109.1285.
为实现真空100 K低温环境中的红外设备测试,设计了一种离轴三反式的准直系统。该系统采用无热化设计,整机结构选用SiC材料,在镜体与支撑结构连接处采用C形开口胀销作为柔性结构,补偿连接结构的低温变形。系统整体除反射镜外,其余部分全部包裹在低温辐射冷板内。低热导绝热支撑结构在热传导链中起热屏蔽作用,实现系统的绝热支撑和快速制冷。在100 K低温环境下对单镜进行仿真分析,主、次、三镜的面形误差均小于λ/50;整机分析得到主、次、三镜的面形误差均不大于
λ
/30。常温下系统各个视场波前差在
λ
/14~
λ
/8内,低温下系统视场波前差在
λ
/8~
λ
/7内,根据瑞利判据可认为波面无缺陷。当
λ
=632.8 nm时,常温下系统在50 lp/mm频率的调制传递函数(Modulation Transfer Function,MTF)大于0.7;低温下的MTF大于0.6,满足系统在50 lp/mm MTF大于0.6的使用要求。仿真结果表明,准直系统可以在100 K真空环境中稳定输出平行光,满足低温红外设备的测试需求。在快速辐射制冷材料级实验中,历经18 h,温度稳定在130 K;历经30 h,SiC镜坯温度稳定在110 K。该实验验证了SiC反射镜快速辐射制冷的可行性。
An off-axis three-mirror collimating optical system is designed to test the infrared equipment in a vacuum 100-K cryogenic environment. The system adopts athermal design, and the whole structure adopts SiC material. A C-shaped opening expansion sleeve is used as a flexible structure to compensate for low-temperature deformation at the connection between the mirror body and the support structure. The whole system is partially wrapped in a radiation cooling panel, except for the reflecting mirror. The low-thermal conductivity thermal insulation support structure plays a thermal shielding role in the heat conduction chain to realize the thermal insulation support and rapid refrigeration of the system. In the 100-K low-temperature environment, according to a system simulation analysis, the primary, secondary, and tertiary mirror wavefront error is
<
λ
/50; an analysis of the whole structure indicates that the wavefront errors of the primary, secondary, and tertiary mirrors are ≤
λ
/30. The wavefront error of each field of view of the system is in the range of
λ
/14-
λ
/8 at room temperature and in the range of
λ
/8-
λ
/7 at 100 K. According to the Rayleigh criterion, the wavefront is considered to be flawless. When
λ
= 632.8 nm, the modulation transfer function (MTF) of the system at a 50 lp/mm frequency is
>
0.7 at room temperature; at a low temperature, the MTF is
>
0.6. Meet the system at 50 lp/mm greater than 0.6 use requirements. The results indicate that the collimating optical system can output parallel light stably in a 100-K vacuum environment to meet the test requirements of low-temperature infrared equipment. In a material level test of fast radiation cooling, the temperature of the SiC mirror blank is stable at 130 K after 18 h. After 30 h, the mirror blank temperature stabilizes at 110 K. The experiment verifies the feasibility of fast radiation cooling of the SiC mirror.
FEINBERG L D , GEITHNER P H . Applying HST lessons learned to JWST [C]. Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter , SPIE Proceedings. Marseille, France. SPIE , 2008 . doi: 10.1117/12.786490 http://dx.doi.org/10.1117/12.786490
LIPPERT J , TIMMS V G . Capability and integration test of the KHILS vacuum cryogenic chamber (KVACC) [J]. SPIE , 1996 , 2741 : 150 - 156 . doi: 10.1117/12.241125 http://dx.doi.org/10.1117/12.241125
LOWRY H S , SIMPSON W R , NICHOLSON R A , et al . Cryogenic optical system development for AEDC’s 10V chamber [C]. SPIE Proceedings, Cryogenic Optical Systems and Instruments IX. Seattle, WA. SPIE , 2002 , 5818 : 82 - 93 . doi: 10.1117/12.451803 http://dx.doi.org/10.1117/12.451803
FLYNN D S , MARLOW S , KIRCHER J R , et al . Development of a two-color projection system for the KHILS Vacuum Cold Chamber (KVACC) [J]. SPIE , 2000 , 4027 : 236 - 247 . doi: 10.1117/12.391692 http://dx.doi.org/10.1117/12.391692
GAO Q J , WANG J , SUN Q . Design of a compact athermalized infrared seeker [J]. Optoelectronics Letters , 2017 , 13 ( 4 ): 287 - 290 . doi: 10.1007/s11801-017-7053-2 http://dx.doi.org/10.1007/s11801-017-7053-2
AI X Q , LIU B , ZHANG X , et al . Thermal difference analysis and athermalization design of infrared optical system [C]. SPIE Proceedings, Optical Design and Testing IV . Beijing, China. SPIE , 2010 , 7849 : 78491 P-1-78491P-6. doi: 10.1117/12.869543 http://dx.doi.org/10.1117/12.869543
ACCETTA J S , SHUMAKER D L . The Infrared and Electro-optical Systems Handbook [M]. Bellingham, Wash : SPIE Optical Engineering Press , 1993
王亚茹 , 李英杰 , 邹莱 , 等 . RB-SiC金刚石磨粒柔性刻划材料去除及表面损伤行为 [J]. 光学 精密工程 , 2022 , 30 ( 14 ): 1704 - 1715 . doi: 10.37188/ope.20223014.1704 http://dx.doi.org/10.37188/ope.20223014.1704
WANG Y R , LI Y J , ZOU L , et al . Material removal and surface damage behavior of diamond grain for flexible scribing RB-SiC [J]. Opt. Precision Eng. , 2022 , 30 ( 14 ): 1704 - 1715 . (in Chinese) . doi: 10.37188/ope.20223014.1704 http://dx.doi.org/10.37188/ope.20223014.1704
BOUGOIN M , LAVENAC J . From Herschel to Gaia: 3-meter class SiC space optics [J]. SPIE , 2011 , 8126 : 50 - 58 . doi: 10.1117/12.893704 http://dx.doi.org/10.1117/12.893704
Castel D , Sein E , Lopez S , et al . The 3,2 m all SiC Telescope for SPICA [J]. SPIE , 2012 , 8450 : 84502-1-84502-13 . doi: 10.1117/12.926891 http://dx.doi.org/10.1117/12.926891
TOULEMONT Y , PASSVOGEL T , PILBRATT G , et al . The 3, 5 m all SiC telescope for Herschel [C]. International Conference on Space Optics-ICSO 2004. March 30-April 2 , 2004 . Toulouse, France. SPIE , 2019 . doi: 10.1117/12.551616 http://dx.doi.org/10.1117/12.551616
王富国 , 乔兵 , 张景旭 . 2m SiC反射镜柔性被动支撑系统 [J]. 光学 精密工程 , 2017 , 25 ( 10 ): 2591 - 2598 . doi: 10.3788/ope.20172510.2591 http://dx.doi.org/10.3788/ope.20172510.2591
WANG F G , QIAO B , ZHANG J X . Flexible passive support system for 2 m SiC reflective mirror [J]. Opt. Precision Eng. , 2017 , 25 ( 10 ): 2591 - 2598 . (in Chinese) . doi: 10.3788/ope.20172510.2591 http://dx.doi.org/10.3788/ope.20172510.2591
LI Z X , ZHANG C H , ZHANG D F , et al . Flexural mounting technology of a 1.8 m space-borne rectangular mirror [J]. Chinese Optics , 2022 , 15 ( 5 ): 1079 - 1091 . doi: 10.37188/co.2022-0131 http://dx.doi.org/10.37188/co.2022-0131
田富湘 , 何欣 . 空间光学遥感器光学镜面有限元分析结果的后处理 [J]. 红外 , 2014 , 35 ( 9 ): 19 - 22 . doi: 10.3969/j.issn.1672-8785.2014.09.005 http://dx.doi.org/10.3969/j.issn.1672-8785.2014.09.005
TIAN F X , HE X . Post-processing of FEA results of optical mirrors for space remote sensor [J]. Infrared , 2014 , 35 ( 9 ): 19 - 22 . (in Chinese) . doi: 10.3969/j.issn.1672-8785.2014.09.005 http://dx.doi.org/10.3969/j.issn.1672-8785.2014.09.005
田富湘 , 何欣 , 张凯 , 等 . 空间相机反射镜镜面面形处理 [J]. 光学仪器 , 2012 , 34 ( 6 ): 5 - 9 . doi: 10.3969/j.issn.1005-5630.2012.06.002 http://dx.doi.org/10.3969/j.issn.1005-5630.2012.06.002
TIAN F X , HE X , ZHANG K , et al . Surface figure treatment for mirrors of the space camera [J]. Optical Instruments , 2012 , 34 ( 6 ): 5 - 9 . (in Chinese) . doi: 10.3969/j.issn.1005-5630.2012.06.002 http://dx.doi.org/10.3969/j.issn.1005-5630.2012.06.002
0
Views
926
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution