浏览全部资源
扫码关注微信
上海工程技术大学 机械与汽车工程学院,上海 201620
Received:13 July 2022,
Revised:30 August 2022,
Published:10 May 2023
移动端阅览
石金鹏,张旭.基于空间语义分割的多车道线检测跟踪网络[J].光学精密工程,2023,31(09):1357-1365.
SHI Jinpeng,ZHANG Xu.Multi-lane line detection and tracking network based on spatial semantics segmentation[J].Optics and Precision Engineering,2023,31(09):1357-1365.
石金鹏,张旭.基于空间语义分割的多车道线检测跟踪网络[J].光学精密工程,2023,31(09):1357-1365. DOI: 10.37188/OPE.20233109.1357.
SHI Jinpeng,ZHANG Xu.Multi-lane line detection and tracking network based on spatial semantics segmentation[J].Optics and Precision Engineering,2023,31(09):1357-1365. DOI: 10.37188/OPE.20233109.1357.
基于深度学习的目标检测网络在车道线识别领域依旧存在车道区别不明显,识别精度低,误检率、漏检率高等问题。为了解决这些问题,提出了一种基于空间实例分割的轻量级车道检测跟踪网络。该方法在编码部分使用VGG16网络和空间卷积神经网络来提高网络结构学习空间关系的能力,解决了预测车道线出现模糊、不连续等问题;基于LaneNet将编码输出后的两个分支任务相耦合,以改进前景与背景识别效果不佳和车道间区分不明显的问题。最后,该方法在TuSimple数据集中与其他
<math id="M1"><mn mathvariant="normal">5</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439245&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439243&type=
1.60866666
2.37066650
种基于语义分割的车道线算法进行对比。实验表明,本文算法的准确率评分为
<math id="M2"><mn mathvariant="normal">97.12</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439257&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439246&type=
8.12800026
2.37066650
%,误检率与漏检率均优于其他网络,并且误检率与漏检率相比于LaneNet分别降低了
<math id="M3"><mn mathvariant="normal">44.87</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439279&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439260&type=
8.04333401
2.37066650
%和
<math id="M4"><mn mathvariant="normal">12.7</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439284&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43439267&type=
6.51933336
2.37066650
%,基本满足实时车道线检测跟踪的要求。
Target detection networks based on deep learning has some problems in the field of lane line recognition, such as unclear lane differences, low recognition accuracy, a high false detection rate, and a high missed detection rate. To solve the aforementioned problems, a lightweight lane detection and tracking network, SCNNLane, based on spatial instance segmentation, was proposed. In the coding part, the VGG16 network and the spatial convolution neural network (SCNN) were applied to improve the ability of the network structure to learn spatial relationships, which solved the problems of blurring and discontinuity in lane prediction. Simultaneously, based on LaneNet, two branch tasks after encoding the output were coupled to improve poor foreground and background recognition and indistinguishability between lanes. Finally, the method was compared with five other semantic segmentation-based lane-line algorithms by using the TuSimple dataset. Experimental results show that the accuracy of this algorithm is 97.12%, and the false detection rate and missed detection rate are reduced by 44.87% and 12.7% respectivel, as compared with LaneNet, thus meeting the demand of real-time lane line detection.
TOROYAN T . Global status report on road safety [J]. Injury Prevention , 2009 , 15 ( 4 ): 286 . doi: 10.1136/ip.2009.023697 http://dx.doi.org/10.1136/ip.2009.023697
HUVAL B , WANG T , TANDON S , et al . An Empirical Evaluation of Deep Learning on Highway Driving [EB/OL]. 2015 : arXiv : 1504 . 01716 . https://arxiv.org/abs/1504.01716 https://arxiv.org/abs/1504.01716 "
HILLEL A B , LERNER R , LEVI D , et al . Recent progress in road and lane detection: a survey [J]. Machine Vision and Applications , 2014 , 25 ( 3 ): 727 - 745 . doi: 10.1007/s00138-011-0404-2 http://dx.doi.org/10.1007/s00138-011-0404-2
何旭光 , 江磊 , 罗一平 , 等 . 基于Hough变换的车道线检测算法设计 [J]. 农业装备与车辆工程 , 2019 , 57 ( 11 ): 90 - 91, 107 . doi: 10.3969/j.issn.1673-3142.2019.11.022 http://dx.doi.org/10.3969/j.issn.1673-3142.2019.11.022
HE X G , JIANG L , LUO Y P , et al . Design of lane detection algorithm based on Hough transform [J]. Agricultural Equipment & Vehicle Engineering , 2019 , 57 ( 11 ): 90 - 91, 107 . (in Chinese) . doi: 10.3969/j.issn.1673-3142.2019.11.022 http://dx.doi.org/10.3969/j.issn.1673-3142.2019.11.022
马泉钧 , 何自超 , 林邦演 , 等 . 基于图像处理的长距离车道线检测 [J]. 河南科技 , 2019 ( 29 ): 111 - 113 . doi: 10.3969/j.issn.1003-5168.2019.29.042 http://dx.doi.org/10.3969/j.issn.1003-5168.2019.29.042
MA Q J , HE Z CH , LIN B Y , et al . Long distance lane detection based on image processing [J]. Henan Science and Technology , 2019 ( 29 ): 111 - 113 . (in Chinese) . doi: 10.3969/j.issn.1003-5168.2019.29.042 http://dx.doi.org/10.3969/j.issn.1003-5168.2019.29.042
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [C]. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. 36,2012 , Lake Tahoe, Nevada. New York : ACM , 2012 : 1097 - 1105 .
ZEILER M D , FERGUS R . Visualizing and Understanding Convolutional Networks [EB/OL]. 2013 : arXiv : 1311 . 2901 . https://arxiv.org/abs/1311.2901 https://arxiv.org/abs/1311.2901 ". doi: 10.1007/978-3-319-10590-1_53 http://dx.doi.org/10.1007/978-3-319-10590-1_53
崔文靓 , 王玉静 , 康守强 , 等 . 基于改进YOLOv3算法的公路车道线检测方法 [J]. 自动化学报 , 2022 , 48 ( 6 ): 1560 - 1568 . doi: 10.16383/j.aas.c190178 http://dx.doi.org/10.16383/j.aas.c190178
CUI W Q , WANG Y J , KANG S Q , et al . Highway lane line detection method based on improved YOLOv3 algorithm [J]. Journal of Automation . 2022 , 48 ( 6 ): 1560 - 1568 . (in Chinese) . doi: 10.16383/j.aas.c190178 http://dx.doi.org/10.16383/j.aas.c190178
王若霄 , 徐智勇 , 张建林 . 跨深度的卷积特征增强目标检测算法 [J]. 计算机工程与设计 , 2020 , 41 ( 7 ): 1864 - 1871 . doi: 10.16208/j.issn1000-7024.2020.07.011 http://dx.doi.org/10.16208/j.issn1000-7024.2020.07.011
WANG R X , XU ZH Y , ZHANG J L . Cross-depth convolutional feature enhancement algorithm for object detection [J]. Computer Engineering and Design , 2020 , 41 ( 7 ): 1864 - 1871 . (in Chinese) . doi: 10.16208/j.issn1000-7024.2020.07.011 http://dx.doi.org/10.16208/j.issn1000-7024.2020.07.011
PAN X G , SHI J P , LUO P , et al . Spatial as deep: spatial CNN for traffic scene understanding [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2018 , 32 ( 1 ). doi: 10.1609/aaai.v32i1.12301 http://dx.doi.org/10.1609/aaai.v32i1.12301
PIZZATI F , GARCÍA F . Enhanced free space detection in multiple lanes based on single CNN with scene identification [C]. 2019 IEEE Intelligent Vehicles Symposium (IV). 912,2019 , Paris, France. IEEE , 2019 : 2536 - 2541 . doi: 10.1109/ivs.2019.8814181 http://dx.doi.org/10.1109/ivs.2019.8814181
刘彬 , 刘宏哲 . 基于改进Enet网络的车道线检测算法 [J]. 计算机科学 , 2020 , 47 ( 4 ): 142 - 149 . doi: 10.11896/jsjkx.190500021 http://dx.doi.org/10.11896/jsjkx.190500021
LIU B , LIU H ZH . Lane detection algorithm based on improved enet network [J]. Computer Science , 2020 , 47 ( 4 ): 142 - 149 . (in Chinese) . doi: 10.11896/jsjkx.190500021 http://dx.doi.org/10.11896/jsjkx.190500021
HOU Q B , ZHANG L , CHENG M M , et al . Strip pooling: rethinking spatial pooling for scene parsing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 4002 - 4011 . doi: 10.1109/cvpr42600.2020.00406 http://dx.doi.org/10.1109/cvpr42600.2020.00406
NEVEN D , DE BRABANDERE B , GEORGOULIS S , et al . Towards end-to-end lane detection: an instance segmentation approach [C]. 2018 IEEE Intelligent Vehicles Symposium (IV). 2630,2018 , Changshu, China. IEEE , 2018 : 286 - 291 . doi: 10.1109/ivs.2018.8500547 http://dx.doi.org/10.1109/ivs.2018.8500547
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [J]. CoRR , 2014 , abs/1409. 1556 .
BOLYA D , ZHOU C , XIAO F Y , et al . YOLACT: real-time instance segmentation [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 272,2019 , Seoul, Korea (South). IEEE , 2020 : 9156 - 9165 . doi: 10.1109/iccv.2019.00925 http://dx.doi.org/10.1109/iccv.2019.00925
CHEN H , SUN K Y , TIAN Z , et al . BlendMask: top-down meets bottom-up for instance segmentation [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 8570 - 8578 . doi: 10.1109/cvpr42600.2020.00860 http://dx.doi.org/10.1109/cvpr42600.2020.00860
0
Views
579
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution