浏览全部资源
扫码关注微信
西安邮电大学 通信与信息工程学院,陕西 西安 710121
Received:13 July 2022,
Revised:08 August 2022,
Published:10 May 2023
移动端阅览
李大湘,苏仲恒,刘颖.基于改进YOLOv4的道路交通标志识别[J].光学精密工程,2023,31(09):1366-1378.
LI Daxiang,SU Zhongheng,LIU Ying.Road traffic sign recognition algorithm based on improved YOLOv4[J].Optics and Precision Engineering,2023,31(09):1366-1378.
李大湘,苏仲恒,刘颖.基于改进YOLOv4的道路交通标志识别[J].光学精密工程,2023,31(09):1366-1378. DOI: 10.37188/OPE.20233109.1366.
LI Daxiang,SU Zhongheng,LIU Ying.Road traffic sign recognition algorithm based on improved YOLOv4[J].Optics and Precision Engineering,2023,31(09):1366-1378. DOI: 10.37188/OPE.20233109.1366.
针对复杂场景中交通标志尺度变化大导致识别精度低的问题,提出了一种改进的YOLOv4算法。首先,设计了一个注意力驱动的尺度感知特征提取模块,通过构建类似残差结构的分层连接方式,增加每层的感受野范围,以获得更具细粒度的多尺度特征,并在注意力驱动下生成一对具有方向感知与位置敏感的注意力图,使网络能聚焦于更具鉴别力的关键区域;然后,构建一个特征对齐的金字塔卷积特征融合模块,即通过卷积计算相邻尺度特征图间的特征偏移量进行特征对齐;最后,通过金字塔卷积的方式使网络自适应学习最优的特征融合模式,并构建特征金字塔用于识别不同尺度的交通标志。实验结果表明,在TT100K数据集上改进算法比原YOLOv4算法的识别精度提高了5.4%,且优于其他对比识别算法,FPS达到33.17,可满足道路交通标志识别的精确性、实时性等要求。
To address the low recognition accuracy resulting from multiple scale changes in the traffic signs of complex scenes, an improved YOLOv4 algorithm is proposed. First, an attention-driven scale-aware feature extraction module is designed, and the range of receptive fields in each layer is widened to obtain more fine-grained multi-scale features by constructing a hierarchical connection mode similar to the residual structure; this is followed by the generation of a pair of attention maps with directional-aware and position-sensitive characteristics under the attention drive so that the network can focus on key areas with more discrimination. Following this, a feature-aligned pyramid convolution feature fusion module is constructed, and the feature offset between adjacent scale feature maps is obtained via convolution for feature alignment. Finally, the network adaptively learns the optimal feature fusion mode through pyramid convolution and constructs a feature pyramid to identify traffic signs with different scales. Experimental results indicate that the recognition accuracy for the TT100K dataset is improved by 5.4% compared with that of the original YOLOv4 algorithm, which is superior to other recognition algorithms, and the FPS reaches 33.17. Thus, the proposed algorithm satisfies the requirements of accuracy and real-time performance for road traffic sign recognition.
KUUTTI S , FALLAH S , KATSAROS K , et al . A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications [J]. IEEE Internet of Things Journal , 2018 , 5 ( 2 ): 829 - 846 . doi: 10.1109/jiot.2018.2812300 http://dx.doi.org/10.1109/jiot.2018.2812300
ZHENG Y , WANG J W , LI K Q . Smoothing traffic flow via control of autonomous vehicles [J]. IEEE Internet of Things Journal , 2020 , 7 ( 5 ): 3882 - 3896 . doi: 10.1109/jiot.2020.2966506 http://dx.doi.org/10.1109/jiot.2020.2966506
YANG X H , LIU W F , ZHANG S L , et al . Targeted attention attack on deep learning models in road sign recognition [J]. IEEE Internet of Things Journal , 2021 , 8 ( 6 ): 4980 - 4990 . doi: 10.1109/jiot.2020.3034899 http://dx.doi.org/10.1109/jiot.2020.3034899
LI Y J , XU X , XIAO J H , et al . Adaptive Square attack: fooling autonomous cars with adversarial traffic signs [J]. IEEE Internet of Things Journal , 2021 , 8 ( 8 ): 6337 - 6347 . doi: 10.1109/jiot.2020.3016145 http://dx.doi.org/10.1109/jiot.2020.3016145
AKATSUKA H , IMAI S . Road signposts recognition system [C]. SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International , 1987 . doi: 10.4271/870239 http://dx.doi.org/10.4271/870239
MALDONADO-BASCON S , LAFUENTE-ARROYO S , GIL-JIMENEZ P , et al . Road-sign detection and recognition based on support vector machines [J]. IEEE Transactions on Intelligent Transportation Systems , 2007 , 8 ( 2 ): 264 - 278 . doi: 10.1109/tits.2007.895311 http://dx.doi.org/10.1109/tits.2007.895311
Kuo W J , Lin C C . Two-stage road sign detection and recognition [C]. 2007 IEEE International Conference on Multimedia and Expo . IEEE , 2007 : 1427 - 1430 . doi: 10.1109/icme.2007.4284928 http://dx.doi.org/10.1109/icme.2007.4284928
MADANI A , YUSOF R . Traffic sign recognition based on color, shape, and pictogram classification using support vector machines [J]. Neural Computing and Applications , 2018 , 30 : 2807 - 2817 . doi: 10.1007/s00521-017-2887-x http://dx.doi.org/10.1007/s00521-017-2887-x
LI J , WANG Z F . Real-time traffic sign recognition based on efficient CNNs in the wild [J]. IEEE Transactions on Intelligent Transportation Systems , 2019 , 20 ( 3 ): 975 - 984 . doi: 10.1109/tits.2018.2843815 http://dx.doi.org/10.1109/tits.2018.2843815
ZHANG J M , XIE Z P , SUN J , et al . A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection [J]. IEEE Access , 2020 , 8 : 29742 - 29754 . doi: 10.1109/access.2020.2972338 http://dx.doi.org/10.1109/access.2020.2972338
ZHANG J M , HUANG M T , JIN X K , et al . A real-time Chinese traffic sign detection algorithm based on modified YOLOv2 [J]. Algorithms , 2017 , 10 ( 4 ): 127 . doi: 10.3390/a10040127 http://dx.doi.org/10.3390/a10040127
SHAN H X , ZHU W X . A small traffic sign detection algorithm based on modified SSD [J]. IOP Conference Series: Materials Science and Engineering , 2019 , 646 ( 1 ): 012006 . doi: 10.1088/1757-899x/646/1/012006 http://dx.doi.org/10.1088/1757-899x/646/1/012006
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
YUAN Y , XIONG Z T , WANG Q . VSSA-NET: vertical spatial sequence attention network for traffic sign detection [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2019 , 28 ( 7 ): 3423 - 3434 . doi: 10.1109/tip.2019.2896952 http://dx.doi.org/10.1109/tip.2019.2896952
LIU Y Y , PENG J Y , XUE J H , et al . TSingNet: Scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild [J]. Neurocomputing , 2021 , 447 : 10 - 22 . doi: 10.1016/j.neucom.2021.03.049 http://dx.doi.org/10.1016/j.neucom.2021.03.049
YANG Y , LIU S , MA W , et al . Efficient traffic-sign recognition with scale-aware CNN [EB/OL]. 2018 : arXiv : 1805 . 12289 . https://arxiv.org/abs/1805.12289 https://arxiv.org/abs/1805.12289 . doi: 10.5244/c.31.168 http://dx.doi.org/10.5244/c.31.168
SZEGEDY C , LIU W , JIA Y Q , et al . Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 712,2015 , Boston, MA, USA. IEEE , 2015 : 1 - 9 . doi: 10.1109/cvpr.2015.7298594 http://dx.doi.org/10.1109/cvpr.2015.7298594
LIU Z G , DU J , TIAN F , et al . MR-CNN: a multi-scale region-based convolutional neural network for small traffic sign recognition [J]. IEEE Access , 2019 , 7 : 57120 - 57128 . doi: 10.1109/access.2019.2913882 http://dx.doi.org/10.1109/access.2019.2913882
LIU Z W , SHEN C , QI M Y , et al . SADANet: integrating scale-aware and domain adaptive for traffic sign detection [J]. IEEE Access , 2020 , 8 : 77920 - 77933 . doi: 10.1109/access.2020.2989758 http://dx.doi.org/10.1109/access.2020.2989758
BOCHKOVSKIY A , WANG C Y , LIAO H Y M . YOLOv4: optimal speed and accuracy of object detection [EB/OL]. 2020 : arXiv : 2004 . 10934 . https://arxiv.org/abs/2004.10934 https://arxiv.org/abs/2004.10934 .
REDMON J , FARHADI A . YOLOv3: an incremental improvement [EB/OL]. 2018 : arXiv : 1804 . 02767 . https://arxiv.org/abs/1804.02767 https://arxiv.org/abs/1804.02767 . doi: 10.1109/cvpr.2017.690 http://dx.doi.org/10.1109/cvpr.2017.690
WANG C Y , MARK LIAO H Y , WU Y H , et al . CSPNet: a new backbone that can enhance learning capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1419,2020 , Seattle, WA, USA. IEEE , 2020 : 1571 - 1580 . doi: 10.1109/cvprw50498.2020.00203 http://dx.doi.org/10.1109/cvprw50498.2020.00203
HE K M , ZHANG X Y , REN S Q , et al . Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 9 ): 1904 - 1916 . doi: 10.1109/tpami.2015.2389824 http://dx.doi.org/10.1109/tpami.2015.2389824
LIU S , QI L , QIN H F , et al . Path aggregation network for instance segmentation [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 8759 - 8768 . doi: 10.1109/cvpr.2018.00913 http://dx.doi.org/10.1109/cvpr.2018.00913
GAO S H , CHENG M M , ZHAO K , et al . Res2Net: a new multi-scale backbone architecture [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , 43 ( 2 ): 652 - 662 . doi: 10.1109/tpami.2019.2938758 http://dx.doi.org/10.1109/tpami.2019.2938758
MA N , ZHANG X , ZHENG H T , et al . Shufflenet v2: Practical guidelines for efficient cnn architecture design [C]. Proceedings of the European conference on computer vision (ECCV) . 2018 : 116 - 131 . doi: 10.1007/978-3-030-01264-9_8 http://dx.doi.org/10.1007/978-3-030-01264-9_8
HOU Q B , ZHOU D Q , FENG J S . Coordinate attention for efficient mobile network design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2025,2021 , Nashville, TN, USA. IEEE , 2021 : 13708 - 13717 . doi: 10.1109/cvpr46437.2021.01350 http://dx.doi.org/10.1109/cvpr46437.2021.01350
ZHENG Z H , WANG P , LIU W , et al . Distance-IoU loss: faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 12993 - 13000 . doi: 10.1609/aaai.v34i07.6999 http://dx.doi.org/10.1609/aaai.v34i07.6999
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [C]. 2017 IEEE International Conference on Computer Vision (ICCV). 2229,2017 , Venice, Italy. IEEE , 2017 : 2999 - 3007 . doi: 10.1109/iccv.2017.324 http://dx.doi.org/10.1109/iccv.2017.324
ZHU Z , LIANG D , ZHANG S H , et al . Traffic-sign detection and classification in the wild [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 2110 - 2118 . doi: 10.1109/cvpr.2016.232 http://dx.doi.org/10.1109/cvpr.2016.232
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 . doi: 10.1109/tpami.2016.2577031 http://dx.doi.org/10.1109/tpami.2016.2577031
OU Z H , XIAO F R , XIONG B Q , et al . FAMN: feature aggregation multipath network for small traffic sign detection [J]. IEEE Access , 2019 , 7 : 178798 - 178810 . doi: 10.1109/access.2019.2959015 http://dx.doi.org/10.1109/access.2019.2959015
LIU Z G , LI D Y , GE S S , et al . Small traffic sign detection from large image [J]. Applied Intelligence , 2020 , 50 ( 1 ): 1 - 13 . doi: 10.1007/s10489-019-01511-7 http://dx.doi.org/10.1007/s10489-019-01511-7
NOH J , BAE W , LEE W , et al . Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 272,2019 , Seoul, Korea (South). IEEE , 2020 : 9724 - 9733 . doi: 10.1109/iccv.2019.00982 http://dx.doi.org/10.1109/iccv.2019.00982
WANG Z S , WANG J Q , LI Y L , et al . Traffic sign recognition with lightweight two-stage model in complex scenes [J]. IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 2 ): 1121 - 1131 . doi: 10.1109/tits.2020.3020556 http://dx.doi.org/10.1109/tits.2020.3020556
0
Views
772
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution