YANG Liu,SHI Shuxian,LI Dongjie.Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input[J].Optics and Precision Engineering,2023,31(10):1501-1508.
YANG Liu,SHI Shuxian,LI Dongjie.Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input[J].Optics and Precision Engineering,2023,31(10):1501-1508. DOI: 10.37188/OPE.20233110.1501.
Hysteresis modeling and experimental verification of piezoelectric actuators with multi-delay input
Piezoelectric actuators (PEAs) are smart drivers that are widely employed in precision instruments to achieve high-speed, high-precision positioning. However, the nonlinear properties of PEAs, such as creep and, particularly, hysteresis, seriously affect their control precision. This paper proposes a multiple delay-input Prandtl–Ishlinskii (MDPI) model to solve the offset and rate-dependent issues encountered during modeling. Notably, the MDPI model has a set of rate-dependent dynamic factors, and offset coefficients are added to improve the asymmetry of the model. Next, experimental data of 1 V sinusoidal signals ranging from 1 to 100 Hz are collected on the piezoelectric micro-motion platform, and the accuracy of the model is compared with that of rate-dependent and dynamic delay PI models. The experimental results indicate that the MDPI model describes the dynamic and hysteresis characteristics of PEAs more accurately than the other two dynamic PI models. For input signal frequencies of 50 and 100 Hz, the maximum absolute errors of the MDPI model are 0.0815 and 0.1429 μm, and the root mean square errors (RMSEs) are 0.009 5 and 0.011 9 μm, respectively. Compared with the RMSE accuracies of the other two models, that of the MDPI model is improved by 72.46% and 64.21%, respectively.
关键词
Keywords
references
CAI J N , CHEN F X , SUN L N , et al . Design of a linear walking stage based on two types of piezoelectric actuators [J]. Sensors and Actuators A: Physical , 2021 , 332 : 112067 . doi: 10.1016/j.sna.2020.112067 http://dx.doi.org/10.1016/j.sna.2020.112067
HABIBULLAH H . 30 Years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners [J]. Measurement , 2020 , 159 : 107776 . doi: 10.1016/j.measurement.2020.107776 http://dx.doi.org/10.1016/j.measurement.2020.107776
HUANG T , LUO ZH H , TAO G B , et al . Hammerstein modeling and feedback linearization control for piezoelectric positioning stage [J]. Opt. Precision Eng. , 2022 , 30 ( 14 ): 1716 - 1724 . (in Chinese) . doi: 10.37188/OPE.20223014.1716 http://dx.doi.org/10.37188/OPE.20223014.1716
CHEN J , PENG G X , HU H , et al . Dynamic hysteresis model and control methodology for force output using piezoelectric actuator driving [J]. IEEE Access , 2020 , 8 : 205136 - 205147 . doi: 10.1109/access.2020.3037216 http://dx.doi.org/10.1109/access.2020.3037216
SON N N , VAN KIEN C , ANH H P H . Adaptive sliding mode control with hysteresis compensation-based neuroevolution for motion tracking of piezoelectric actuator [J]. Applied Soft Computing , 2022 , 115 : 108257 . doi: 10.1016/j.asoc.2021.108257 http://dx.doi.org/10.1016/j.asoc.2021.108257
JANAIDEH MAL , RAKOTONDRABE M . Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities [J]. Nonlinear Dynamics , 2021 , 104 ( 4 ): 3385 - 3405 . doi: 10.1007/s11071-021-06460-w http://dx.doi.org/10.1007/s11071-021-06460-w
CHEN H , TAN Y H , ZHOU X P , et al . Identification and control of dynamic modeling for piezoceramic actuator [J]. Opt. Precision Eng. , 2012 , 20 ( 1 ): 88 - 95 . (in Chinese) . doi: 10.3788/ope.20122001.0088 http://dx.doi.org/10.3788/ope.20122001.0088
DENG M C , JIANG C G , INOUE A , et al . Operator-based robust control for nonlinear systems with Prandtl-Ishlinskii hysteresis [J]. International Journal of Systems Science , 2011 , 42 ( 4 ): 643 - 652 . doi: 10.1080/00207720903151318 http://dx.doi.org/10.1080/00207720903151318
SAYYAADI H , ZAKERZADEH M R . Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model [J]. Mechatronics , 2012 , 22 ( 7 ): 945 - 957 . doi: 10.1016/j.mechatronics.2012.06.003 http://dx.doi.org/10.1016/j.mechatronics.2012.06.003
GUO Z , TIAN Y , LIU X , et al . An inverse Prandtl-Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism [J]. Sensors and Actuators A: Physical , 2015 , 230 : 52 - 62 . doi: 10.1016/j.sna.2015.04.018 http://dx.doi.org/10.1016/j.sna.2015.04.018
AN D , YANG Y X , XU Y , et al . Compensation of hysteresis in the piezoelectric nanopositioning stage under reciprocating linear voltage based on a mark-segmented PI model [J]. Micromachines , 2019 , 11 ( 1 ): 9 . doi: 10.3390/mi11010009 http://dx.doi.org/10.3390/mi11010009
FENG Y , LI Y . System identification of micro piezoelectric actuators via rate-dependent Prandtl-ishlinskii hysteresis model based on a modified PSO algorithm [J]. IEEE Transactions on Nanotechnology , 2021 , 20 : 205 - 214 . doi: 10.1109/tnano.2020.3034965 http://dx.doi.org/10.1109/tnano.2020.3034965
WANG W , HAN F M , CHEN Z F , et al . Modeling and compensation for asymmetrical and dynamic hysteresis of piezoelectric actuators using a dynamic delay Prandtl-ishlinskii model [J]. Micromachines , 2021 , 12 ( 1 ): 92 . doi: 10.3390/mi12010092 http://dx.doi.org/10.3390/mi12010092
WU H J , DUAN Y , YANG H L , et al . Accurate measurement of initial phase difference by Lissajousfigure [J]. Physics Experimentation , 2019 , 39 ( 12 ): 50 - 53 . (in Chinese)