浏览全部资源
扫码关注微信
1.华南理工大学 机械与汽车工程学院,广东 广州 510640
2.广东科技学院,广东 东莞 523083
Received:02 February 2023,
Revised:16 March 2023,
Published:25 June 2023
移动端阅览
周聪,陈钊杰,谢晋等.芯片材料表面微纳流道的金刚石滚压成型实验研究[J].光学精密工程,2023,31(12):1785-1792.
ZHOU Cong,CHEN Zhaojie,XIE Jin,et al.Experimental study on rolling microchannel and nanochannel in chip materials by diamond[J].Optics and Precision Engineering,2023,31(12):1785-1792.
周聪,陈钊杰,谢晋等.芯片材料表面微纳流道的金刚石滚压成型实验研究[J].光学精密工程,2023,31(12):1785-1792. DOI: 10.37188/OPE.20233112.1785.
ZHOU Cong,CHEN Zhaojie,XIE Jin,et al.Experimental study on rolling microchannel and nanochannel in chip materials by diamond[J].Optics and Precision Engineering,2023,31(12):1785-1792. DOI: 10.37188/OPE.20233112.1785.
在微流控芯片中,微流体自驱动受限于微纳流道制造技术。因此,提出一种采用分布有锯齿状微尖端的金刚石刀轮滚压硬脆性芯片材料表面的微纳流道加工方法。通过实验研究,分析微纳流道成型机理,且研究工艺参数及材料性质的作用机制,并探究其自驱动微流变性能。结果表明:在一定的切深和气压下,刀轮微尖端处的材料接触面产生应力集中,当达到压痕间裂纹贯通值时,以远大于刀轮滚压速度在材料表面形成纳米流道,当超过材料强度极限时形成微米流道,且深宽比随着最大应力增大而增大。单晶碳化硅、蓝宝石和光学玻璃形成纳米流道的最大应力范围分别为266~750 MPa,256~600 MPa和74~150 MPa,其中,光学玻璃的纳米流道深宽比高达1.1,表面粗糙度低至1 nm。低硬度材料可生成高深宽比的纳米流道,而高断裂韧性的材料表面质量最高。此外,纳米流道能够以高至0.055 mm/s的速度和低至0.001 μm
3
/s的剂量自驱动微流体。
As regards microfluidic chips, the advancement of self-driven microfluidics is hindered by the limitations of microchannel and nanochannel fabrication techniques. Therefore, the fabrication of microchannels and nanochannels by using a diamond cutter wheel featuring serrated microtips to roll the surfaces of hard and brittle chip materials was proposed in this study. The mechanism of microchannel and nanochannel formation was analyzed through experimental studies, and the mechanisms of the process parameters and material properties, as well as the self-driven micro-rheological properties, were investigated. The results indicate that at a certain feed depth and the barometric pressure, stress concentration occurs on the material contact surface at the microtip of the cutter wheel. Once the crack penetration value between the indentations is reached, nanochannels are formed on the material surface at a speed significantly higher than the cutter wheel rolling speed, and microchannels are formed when the strength limit of the material is exceeded. The aspect ratio increases with the maximum stress. The maximum-stress ranges for nanochannel formation in 4H-SiC, sapphire, and optical glass are 266-750, 256-600, and 74-150 MPa respectively, with optical glass exhibiting nanochannels with aspect ratios as high as 1.1 and surface roughness values as low as 1 nm. Low-hardness materials can produce nanochannels with higher aspect ratios, while high-fracture toughness materials exhibit the highest surface quality. In addition, the self-driven microfluids in nanochannels can achieve flow velocities as high as 0.055 mm/s and doses as low as 0.001 μm
3
/s.
石岩 , 郭志 , 刘佳 , 等 . SLM增材制造微流道内表面磨粒流抛光工艺与机理 [J]. 表面技术 , 2021 , 50 ( 9 ): 361 - 369, 389 .
SHI Y , GUO ZH , LIU J , et al . Process and mechanism of abrasive flow polishing on the inner surface of microchannel made by SLM additive [J]. Surface Technology , 2021 , 50 ( 9 ): 361 - 369, 389 . (in Chinese)
沈腾 , 王炅 . 离心力作用下流体在矩形微通道中的瞬态流动特性 [J]. 上海交通大学学报 , 2016 , 50 ( 6 ): 968 - 974 .
SHEN T , WANG J . Transient flow characteristics of fluid in rectangular microchannel under centrifugal force [J]. Journal of Shanghai Jiao Tong University , 2016 , 50 ( 6 ): 968 - 974 . (in Chinese)
陈立国 , 王兆龙 , 卞雄恒 . 扇形电极微液滴分离的数字微流控芯片 [J]. 光学 精密工程 , 2019 , 27 ( 9 ): 1919 - 1925 . doi: 10.3788/ope.20192709.1919 http://dx.doi.org/10.3788/ope.20192709.1919
CHEN L G , WANG ZH L , BIAN X H . Micro-droplet split digital microfluidic device with fan-shaped electrode [J]. Opt. Precision Eng. , 2019 , 27 ( 9 ): 1919 - 1925 . (in Chinese) . doi: 10.3788/ope.20192709.1919 http://dx.doi.org/10.3788/ope.20192709.1919
刘赵淼 , 杨洋 , 杜宇 , 等 . 微流控液滴技术及其应用的研究进展 [J]. 分析化学 , 2017 , 45 ( 2 ): 282 - 296 . doi: 10.11895/j.issn.0253-3820.160498 http://dx.doi.org/10.11895/j.issn.0253-3820.160498
LIU ZH M , YANG Y , DU Y , et al . Advances in droplet-based microfluidics technology and its applications [J]. Chinese Journal of Analytical Chemistry , 2017 , 45 ( 2 ): 282 - 296 . (in Chinese) . doi: 10.11895/j.issn.0253-3820.160498 http://dx.doi.org/10.11895/j.issn.0253-3820.160498
谢晋 , 郭奥钿 , 卢阔 , 等 . 微流道精密磨削技术及自驱动检测芯片实验研究 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1743 - 1750 .
XIE J , GUO A D , LU K , et al . Experimental study on grinding technology of microchannel for self-driven detection chip [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1743 - 1750 . (in Chinese)
黄水泉 , 高尚 , 黄传真 , 等 . 脆性材料磨粒加工的纳米尺度去除机理 [J]. 金刚石与磨料磨具工程 , 2022 , 42 ( 3 ): 257 - 267, F 0003 . doi: 10.13394/j.cnki.jgszz.2021.3009 http://dx.doi.org/10.13394/j.cnki.jgszz.2021.3009
HUANG SH Q , GAO SH , HUANG CH ZH , et al . Nanoscale removal mechanisms in abrasive machining of brittle solids [J]. Diamond & Abrasives Engineering , 2022 , 42 ( 3 ): 257 - 267, F 0003 . (in Chinese) . doi: 10.13394/j.cnki.jgszz.2021.3009 http://dx.doi.org/10.13394/j.cnki.jgszz.2021.3009
ARAMCHAROEN A , SEAN S K C , KUI L . An experimental study of micromilling of polymer materials for microfluidic applications [J]. International Journal of Abrasive Technology , 2012 , 5 ( 4 ): 286 . doi: 10.1504/ijat.2012.052037 http://dx.doi.org/10.1504/ijat.2012.052037
史杨 , 许兵 , 吴东 , 等 . 飞秒激光直写技术制备功能化微流控芯片研究进展 [J]. 中国激光 , 2019 , 46 ( 10 ): 1000001 . doi: 10.3788/cjl201946.1000001 http://dx.doi.org/10.3788/cjl201946.1000001
SHI Y , XU B , WU D , et al . Research progress in preparation of functional microfluidic chips by femtosecond laser direct writing technology [J]. Chinese Journal of Lasers , 2019 , 46 ( 10 ): 1000001 . (in Chinese) . doi: 10.3788/cjl201946.1000001 http://dx.doi.org/10.3788/cjl201946.1000001
高晓蕾 , 陈艺勤 , 郑梦洁 , 等 . 大面积纳米压印技术及其器件应用 [J]. 光学 精密工程 , 2022 , 30 ( 5 ): 555 - 573 . doi: 10.37188/ope.20223005.0555 http://dx.doi.org/10.37188/ope.20223005.0555
GAO X L , CHEN Y Q , ZHENG M J , et al . Large-area nanoimprint lithography: processes and device applications [J]. Opt. Precision Eng. , 2022 , 30 ( 5 ): 555 - 573 . (in Chinese) . doi: 10.37188/ope.20223005.0555 http://dx.doi.org/10.37188/ope.20223005.0555
BARBATO G , GENTA G , CAGLIERO R , et al . Uncertainty evaluation of indentation modulus in the nano-range: contact stiffness contribution [J]. CIRP Annals , 2017 , 66 ( 1 ): 495 - 498 . doi: 10.1016/j.cirp.2017.04.060 http://dx.doi.org/10.1016/j.cirp.2017.04.060
WANG J , YIN Z . SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography [J]. Materials Science in Semiconductor Processing , 2018 , 84 : 144 - 150 . doi: 10.1016/j.mssp.2018.05.028 http://dx.doi.org/10.1016/j.mssp.2018.05.028
陈绒 , 周聪 , 谢晋 , 等 . 金刚石刀轮滚压脆断单晶硅和蓝宝石的实验研究 [J]. 光学 精密工程 , 2022 , 30 ( 6 ): 702 - 710 . doi: 10.37188/OPE.20223006.0702 http://dx.doi.org/10.37188/OPE.20223006.0702
CHEN R , ZHOU C , XIE J , et al . Experimental study on rolling and brittle fracture to single crystal silicon and sapphire by diamond cutter wheel [J]. Opt. Precision Eng. , 2022 , 30 ( 6 ): 702 - 710 . (in Chinese) . doi: 10.37188/OPE.20223006.0702 http://dx.doi.org/10.37188/OPE.20223006.0702
赵士明 , 赵静一 , 李文雷 , 等 . 微流体驱动与控制系统的研究进展 [J]. 制造技术与机床 , 2018 ( 7 ): 40 - 47 .
ZHAO S M , ZHAO J Y , LI W L , et al . Research progress of microfluid drive and control system [J]. Manufacturing Technology & Machine Tool , 2018 ( 7 ): 40 - 47 . (in Chinese)
BISWAS P , MUKUNTHAN SULOCHANA G N , BANUPRASAD T N , et al . All-serotype dengue virus detection through multilayered origami-based paper/polymer microfluidics [J]. ACS Sensors , 2022 , 7 ( 12 ): 3720 - 3729 . doi: 10.1021/acssensors.2c01525 http://dx.doi.org/10.1021/acssensors.2c01525
LI C , ZHANG F H , MENG B B , et al . Simulation and experiment on surface morphology and mechanical properties response in nano-indentation of 6H-SiC [J]. Journal of Materials Engineering and Performance , 2017 , 26 ( 3 ): 1000 - 1009 . doi: 10.1007/s11665-017-2518-9 http://dx.doi.org/10.1007/s11665-017-2518-9
TRABADELO V , PATHAK S , SAEIDI F , et al . Nanoindentation deformation and cracking in sapphire [J]. Ceramics International , 2019 , 45 ( 8 ): 9835 - 9845 . doi: 10.1016/j.ceramint.2019.02.022 http://dx.doi.org/10.1016/j.ceramint.2019.02.022
张飞虎 , 李琛 , 孟彬彬 , 等 . 基于变切深纳米刻划的K9玻璃表面成形特征及去除机制研究 [J]. 机械工程学报 , 2016 , 52 ( 17 ): 65 - 71 . doi: 10.3901/jme.2016.17.065 http://dx.doi.org/10.3901/jme.2016.17.065
ZHANG F H , LI C , MENG B B , et al . Investigation of surface deformation characteristic and removal mechanism for K9 glass based on varied cutting-depth nano-scratch [J]. Journal of Mechanical Engineering , 2016 , 52 ( 17 ): 65 - 71 . (in Chinese) . doi: 10.3901/jme.2016.17.065 http://dx.doi.org/10.3901/jme.2016.17.065
0
Views
114
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution