浏览全部资源
扫码关注微信
1.北京交通大学 机械与电子控制工程学院,北京 100044
2.北京交通大学 智慧高铁系统前沿科学中心,北京 100044
Received:14 June 2022,
Revised:06 August 2022,
Published:25 June 2023
移动端阅览
郭保青,张德芬.基于度量元学习的铁路小样本入侵目标检测方法[J].光学精密工程,2023,31(12):1816-1826.
GUO Baoqing,ZHANG Defen.Railway few-shot intruding objects detection method with metric meta learning[J].Optics and Precision Engineering,2023,31(12):1816-1826.
郭保青,张德芬.基于度量元学习的铁路小样本入侵目标检测方法[J].光学精密工程,2023,31(12):1816-1826. DOI: 10.37188/OPE.20233112.1816.
GUO Baoqing,ZHANG Defen.Railway few-shot intruding objects detection method with metric meta learning[J].Optics and Precision Engineering,2023,31(12):1816-1826. DOI: 10.37188/OPE.20233112.1816.
异物入限是导致铁路安全事故频发的主要原因之一,传统深度学习需要大量训练样本进行网络训练,但铁路场景中入侵样本很少且难于获取。本文提出了基于改进度量元学习的铁路小样本异物入侵检测方法。为了让入侵目标的特征表征在分类时发挥更大作用,提出了基于通道注意力机制的特征提取网络;为解决样本数量不足时个别样本在特征空间中产生偏离的问题,提出了一种基于类中心微调的网络用于类别中心的修正;同时,基于center loss与交叉熵构建了中心相关损失函数用于小样本网络训练,提升特征空间中同类别特征分布的紧凑性。在公共数据集miniImageNet上与经典小样本学习模型中最优的相比,本文算法在5-way 5-shot设置下图像分类准确率提升了7.31%。在铁路入侵小样本数据集的5-way 5-shot消融实验表明:本文提出的通道注意力机制(Channel Attention Mechanism,CAM)和中心相关损失函数分别提升0.86%和1.91%的检测精度;提出的类中心微调和预训练方法对检测精度的提升效果更明显,分别达到3.05%和6.70%,上述模块综合应用的提升效果达到了7.90%。
Object intrusion is among the primary causes of railway accidents. Typically, traditional deep-learning methods require numerous samples for network training; however, intrusion samples in railway settings are scarce and difficult to obtain. Thus, in this paper, a railway few-shot intruding-object detection method based on an improved metric meta-learning network is proposed. To better exploit the features of intruding objects during classification, a feature-extraction network based on the channel attention mechanism is proposed. A network based on fine-tuning of the class center is proposed for class-center correction to solve the problem of individual samples deviating in the feature space of insufficient samples. Additionally, a central correlation loss function based on the center loss and cross entropy is constructed for few-shot network training to improve the compactness of the same-class feature distribution in the feature space. In experiments on a public few-shot dataset called miniImageNet, the accuracy of the proposed method is 7.31% higher than the optimal accuracy of the classical few-shot learning model. In five-way five-shot ablation experiments using a railway dataset, the proposed channel attention mechanism and center-related loss function increase the mean average precision (mAP) by 0.86% and 1.91%, respectively. Additionally, the center fine-tuning and pretraining increase the mAP by 3.05% and 6.70%, respectively, and the total mAP improvement is 7.90%.
CATALANO A , BRUNO FA , GALLIANO C , et al . An optical fiber intrusion detection system for railway security [J]. Sensors and Actuators A: Physical , 2017 , 253 : 91 - 100 . doi: 10.1016/j.sna.2016.11.026 http://dx.doi.org/10.1016/j.sna.2016.11.026
ALVAREZ F J , URENA J , MAZO M , et al . Ultrasonic Sensor System for Detecting Falling Objects on Railways [C]. IEEE Intelligent Vehicles Symposium.14 - 17 , 2004, Parma, Italy. IEEE , 2004: 866 - 871 . doi: 10.1109/ivs.2004.1336498 http://dx.doi.org/10.1109/ivs.2004.1336498
王瑞 , 李霄峰 , 史天运 , 等 . 基于视频深度学习的铁路周界入侵检测算法研究 [J]. 交通运输系统工程与信息 , 2020 , 20 ( 2 ): 61 - 68 .
WANG R , LI X F , SHI T Y , et al . Railway perimeter intrusion detection algorithms based on video deep learning [J]. Journal of Transportation Systems Engineering and Information Technology , 2020 , 20 ( 2 ): 61 - 68 . (in Chinese)
陈莹 , 朱宇 . 模态自适应权值学习机制下的多光谱行人检测网络 [J]. 光学 精密工程 , 2020 , 28 ( 12 ): 2700 - 2709 . doi: 10.37188/OPE.20202812.2700 http://dx.doi.org/10.37188/OPE.20202812.2700
CHEN Y , ZHU Y . Multispectral pedestrian detection network under modal adaptive weight learning mechanism [J]. Opt. Precision Eng. , 2020 , 28 ( 12 ): 2700 - 2709 . (in Chinese) . doi: 10.37188/OPE.20202812.2700 http://dx.doi.org/10.37188/OPE.20202812.2700
郭保青 , 王宁 . 基于改进深度卷积网络的铁路入侵行人分类算法 [J]. 光学 精密工程 , 2018 , 26 ( 12 ): 3040 - 3050 . doi: 10.3788/ope.20182612.3040 http://dx.doi.org/10.3788/ope.20182612.3040
GUO B Q , WANG N . Pedestrian intruding railway clearance classification algorithm based on improved deep convolutional network [J]. Opt. Precision Eng. , 2018 , 26 ( 12 ): 3040 - 3050 . (in Chinese) . doi: 10.3788/ope.20182612.3040 http://dx.doi.org/10.3788/ope.20182612.3040
何文玉 , 杨杰 , 张天露 . 基于深度学习的轨道异物入侵检测算法 [J]. 计算机工程与设计 , 2020 , 41 ( 12 ): 3376 - 3383 .
HE W Y , YANG J , ZHANG T L . Orbital foreign object intrusion detection algorithm based on deep learning [J]. Computer Engineering and Design , 2020 , 41 ( 12 ): 3376 - 3383 . (in Chinese)
宋闯 , 赵佳佳 , 王康 等 . 面向智能感知的小样本学习研究综述 [J]. 航空学报 , 2020 , 41 ( S1 ): 15 - 28 .
SONG CH , ZHAO J J , WANG K , et al . A survey of few shot learning based on intelligent perception [J]. Acta Aeronautica et Astronautica Sinica , 2020 , 41 ( S1 ): 15 - 28 .
SNELL J , SWERSK Y K , ZEMEL R , Prototypical net-works for few-shot learning [C]. Advances in Neural Information Processing Systems , 2017 : 4077 - 4087 .
SUNG F , YANG Y , ZHANG L , et al . Learning to compare:Relation network for few-shot learning [C]. IEEE , 2018 : 1199 - 1208 . doi: 10.1109/cvpr.2018.00131 http://dx.doi.org/10.1109/cvpr.2018.00131
XU C Y , SHEN J Z , DU X . A method of few-shot network intrusion detection based on meta-learning framework [J]. IEEE Transactions on Information Forensics and Security , 2020 , 15 : 3540 - 3552 . doi: 10.1109/tifs.2020.2991876 http://dx.doi.org/10.1109/tifs.2020.2991876
ALFASSY A , KARLINSKY L , AIDES A , et al . LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 15 - 20 , 2019, Long Beach, CA, USA. IEEE , 2020: 6541 - 6550 . doi: 10.1109/cvpr.2019.00671 http://dx.doi.org/10.1109/cvpr.2019.00671
ZHANG C , CAI Y J , LIN G S , et al . DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover's Distance and Structured Classifiers [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 13 - 19 , 2020, Seattle, WA, USA. IEEE , 2020: 12200 - 12210 . doi: 10.1109/cvpr42600.2020.01222 http://dx.doi.org/10.1109/cvpr42600.2020.01222
HE K M , ZHANG X Y , REN S Q , et al . Deep Residual Learning for Image Recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 27 - 30 , 2016, Las Vegas, NV, USA. IEEE , 2016: 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
HU J , SHEN L , SUN G . Squeeze-and-Excitation Networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 18 - 23 , 2018, Salt Lake City, UT, USA. IEEE , 2018: 7132 - 7141 . doi: 10.1109/cvpr.2018.00745 http://dx.doi.org/10.1109/cvpr.2018.00745
WOO S , PARK J , LEE J Y , et al . CBAM : Convolutional Block Attention Module [M]. Computer Vision - ECCV 2018. Cham : Springer International Publishing , 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
WEN Y D , ZHANG K P , LI Z F , et al . A Discriminative Feature Learning Approach for Deep Face Recognition [M]. Computer Vision-ECCV 2016. Cham : Springer International Publishing , 2016 : 499 - 515 . doi: 10.1007/978-3-319-46478-7_31 http://dx.doi.org/10.1007/978-3-319-46478-7_31
FINN C , ABBEEL P , LEVINE S . Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [C]. Proceedings of the 34th International Conference on Machine Learning - Volume 70. August 6 - 11 , 2017, Sydney, NSW, Australia. New York : ACM , 2017: 1126 - 1135 .
VINYALS O , BLUNDELL C , LILLICRAP T , et al . Matching Networks for One Shot Learning [C]. Proceedings of the 30th International Conference on Neural Information Processing Systems . New York : ACM , 2016 : 3637 - 3645 .
CHEN W , LIU Y , KIRA Z , et al . A closer look at few-shot classification [C]. arXiv preprint arXiv : 1904 .04232. 2019 .
0
Views
178
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution