浏览全部资源
扫码关注微信
1.湖北省水电工程智能视觉监测重点实验室(三峡大学),湖北 宜昌 443002
2.三峡大学 大数据研究中心,湖北 宜昌 443002
3.三峡大学 计算机与信息学院,湖北 宜昌 443002
Received:18 July 2022,
Revised:22 September 2022,
Published:25 June 2023
移动端阅览
邹耀斌,孟祥丹,孙水发等.平稳小波域多尺度乘积下的指数Renyi熵自动阈值选择方法[J].光学精密工程,2023,31(12):1841-1858.
ZOU Yaobin,MENG Xiangdan,SUN Shuifa,et al.Automatic threshold selection method using exponential Renyi entropy under multi-scale product in stationary wavelet domain[J].Optics and Precision Engineering,2023,31(12):1841-1858.
邹耀斌,孟祥丹,孙水发等.平稳小波域多尺度乘积下的指数Renyi熵自动阈值选择方法[J].光学精密工程,2023,31(12):1841-1858. DOI: 10.37188/OPE.20233112.1841.
ZOU Yaobin,MENG Xiangdan,SUN Shuifa,et al.Automatic threshold selection method using exponential Renyi entropy under multi-scale product in stationary wavelet domain[J].Optics and Precision Engineering,2023,31(12):1841-1858. DOI: 10.37188/OPE.20233112.1841.
受目标和背景的大小比例、噪声或者随机细节等因素影响,灰度图像的灰度直方图可能呈现出无峰、单峰、双峰或者多峰模式。为了在统一框架内处理这4种不同直方图模式下的自动阈值选择问题,提出了一种平稳小波域多尺度乘积下的指数Renyi熵自动阈值选择方法。该方法首先利用平稳小波对原始图像进行水平、垂直和对角方向的多尺度变换,再对各个方向的高频子带进行多尺度乘积运算构造出融合图像;然后通过内外轮廓图像对融合图像进行采样重构一维直方图;最后计算重构直方图所对应的指数Renyi熵,并取最大值对应的阈值作为最终分割阈值。提出的方法与4种自动阈值分割方法、2种聚类分割方法以及2种活动轮廓分割方法进行了比较。在16幅合成图像和50幅真实世界图像上的实验结果表明:在合成图像集中,相比于分割精度第2的方法,平均马修斯相关系数提高了41.2%;在真实世界图像集中,相比于分割精度第二的方法,平均马修斯相关系数提高了20.8%。提出的方法具有更稳健的分割适应性,且在分割精度方面明显优于其他8个分割方法。
When a gray-level image is affected by different factors, such as the size ratio of the target to the background, noise, or random details, its gray-level histogram exhibits peakless, unimodal, bimodal, or multimodal patterns. To deal with the issue of automatic threshold selection in these four situations within a unified framework, an automatic threshold selection method using the exponential Rényi entropy under the multi-scale product in the stationary wavelet domain is proposed. First, stationary wavelet multi-scale transformation is applied to the original gray-level image in the horizontal, vertical, and diagonal directions, and a fused image is constructed via the multi-scale multiplication of high-frequency sub-bands in each direction. Then, the fused image is sampled by the inner and outer contour image to construct a one-dimensional gray-level histogram. Finally, the exponential Rényi entropy corresponding to the constructed histogram is calculated, and the threshold corresponding to the maximum exponential Rényi entropy is taken as the final threshold. The proposed method was compared with four automatic threshold segmentation methods, two clustering segmentation methods, and two active contour segmentation methods. The experimental results for 16 synthetic images and 50 real-world images indicated that with regard to the segmentation accuracy, the proposed method outperformed the second-best method by 41.2% and 20.8% in terms of the average Matthews correlation coefficient for the synthetic and real-world images, respectively. Although the proposed method has no advantage with regard to computational efficiency, it has more robust segmentation adaptability and a higher segmentation accuracy than the other eight segmentation methods.
吴一全 , 孟天亮 , 吴诗婳 . 图像阈值分割方法研究进展20年(1994—2014) [J]. 数据采集与处理 , 2015 , 30 ( 1 ): 1 - 23 . doi: 10.16337/j.1004-9037.2015.01.001 http://dx.doi.org/10.16337/j.1004-9037.2015.01.001
WU Y Q , MENG T L , WU S H . Research progress of image thresholding methods in recent 20 years (1994-2014) [J]. Journal of Data Acquisition & Processing , 2015 , 30 ( 1 ): 1 - 23 . (in Chinese) . doi: 10.16337/j.1004-9037.2015.01.001 http://dx.doi.org/10.16337/j.1004-9037.2015.01.001
袁小翠 , 吴禄慎 , 陈华伟 . 基于Otsu方法的钢轨图像分割 [J]. 光学 精密工程 , 2016 , 24 ( 7 ): 1772 - 1781 . doi: 10.3788/ope.20162407.1772 http://dx.doi.org/10.3788/ope.20162407.1772
YUAN X C , WU L S , CHEN H W . Rail image segmentation based on Otsu threshold method [J]. Opt. Precision Eng. , 2016 , 24 ( 7 ): 1772 - 1781 . (in Chinese) . doi: 10.3788/ope.20162407.1772 http://dx.doi.org/10.3788/ope.20162407.1772
姜鑫 , 陈武雄 , 聂海涛 , 等 . 航空遥感影像的实时舰船目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 10 ): 2360 - 2369 . doi: 10.37188/ope.20202810.2360 http://dx.doi.org/10.37188/ope.20202810.2360
JIANG X , CHEN W X , NIE H T , et al . Real-time ship target detection based on aerial remote sensing images [J]. Opt. Precision Eng. , 2020 , 28 ( 10 ): 2360 - 2369 . (in Chinese) . doi: 10.37188/ope.20202810.2360 http://dx.doi.org/10.37188/ope.20202810.2360
NIE F , ZHANG P , LI J , et al . A novel generalized entropy and its application in image thresholding [J]. Signal Processing , 2017 , 134 : 23 - 34 . doi: 10.1016/j.sigpro.2016.11.004 http://dx.doi.org/10.1016/j.sigpro.2016.11.004
WANG Z Z , XIONG J J , YANG Y M , et al . A flexible and robust threshold selection method [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2017 , 28 ( 9 ): 2220 - 2232 . doi: 10.1109/tcsvt.2017.2719122 http://dx.doi.org/10.1109/tcsvt.2017.2719122
YAZID H , BASAH S N , RAHIM S A , et al . Performance analysis of entropy thresholding for successful image segmentation [J]. Multimedia Tools and Applications , 2022 , 81 ( 5 ): 6433 - 6450 . doi: 10.1007/s11042-021-11813-z http://dx.doi.org/10.1007/s11042-021-11813-z
罗希平 , 田捷 . 用最大熵原则作多阈值选择的条件迭代算法 [J]. 软件学报 , 2000 , 11 ( 3 ): 379 - 385 . doi: 10.1038/sj.cr.7290056 http://dx.doi.org/10.1038/sj.cr.7290056
LUO X P , TIAN J . The ICM algorithm for multi-level threshold selection by maximum entropy criterion [J]. Journal of Software , 2000 , 11 ( 3 ): 379 - 385 . (in Chinese) . doi: 10.1038/sj.cr.7290056 http://dx.doi.org/10.1038/sj.cr.7290056
CHANG C I , DU Y , WANG J , et al . Survey and comparative analysis of entropy and relative entropy thresholding techniques [J]. IEE Proceedings-Vision, Image, and Signal Processing , 2006 , 153 ( 6 ): 837 . doi: 10.1049/ip-vis:20050032 http://dx.doi.org/10.1049/ip-vis:20050032
Pun T . A new method for grey-level picture thresholding using the entropy of the histogram [J]. Signal Processing , 1980 , 2 ( 3 ): 223 - 237 . doi: 10.1016/0165-1684(80)90020-1 http://dx.doi.org/10.1016/0165-1684(80)90020-1
KAPUR JN , SAHOO PK , WONG AK . A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing , 1985 , 29 ( 3 ): 273 - 285 . doi: 10.1016/0734-189x(85)90125-2 http://dx.doi.org/10.1016/0734-189x(85)90125-2
ABUTALEB AS . Automatic thresholding of gray-level pictures using two-dimensional entropy [J]. Computer Vision, Graphics, and Image Processing , 1989 , 47 ( 1 ): 22 - 32 . doi: 10.1016/0734-189x(89)90051-0 http://dx.doi.org/10.1016/0734-189x(89)90051-0
WONG A K C , SAHOO P K . A gray-level threshold selection method based on maximum entropy principle [J]. IEEE Transactions on Systems, Man, and Cybernetics , 1989 , 19 ( 4 ): 866 - 871 . doi: 10.1109/21.35351 http://dx.doi.org/10.1109/21.35351
DE ALBUQUERQUE MP , ESQUEF IA , MELLO AG . Image thresholding using tsallis entropy [J]. Pattern Recognition Letters , 2004 , 25 ( 9 ): 1059 - 1065 . doi: 10.1016/j.patrec.2004.03.003 http://dx.doi.org/10.1016/j.patrec.2004.03.003
SAHOO P , WILKINS C , YEAGER J . Threshold selection using Renyi’s entropy [J]. Pattern Recognition , 1997 , 30 ( 1 ): 71 - 84 . doi: 10.1016/s0031-3203(96)00065-9 http://dx.doi.org/10.1016/s0031-3203(96)00065-9
Wang S , Chung FL . Note on the equivalence relationship between Renyi-entropy based and Tsallis-entropy based image thresholding [J]. Pattern Recognition Letters , 2005 , 26 ( 14 ): 2309 - 2312 . doi: 10.1016/j.patrec.2005.03.027 http://dx.doi.org/10.1016/j.patrec.2005.03.027
SAHOO PK , ARORA G . A thresholding method based on two-dimensional Renyi’s entropy [J]. Pattern Recognition , 2004 , 37 ( 6 ): 1149 - 1161 . doi: 10.1016/j.patcog.2003.10.008 http://dx.doi.org/10.1016/j.patcog.2003.10.008
SAHOO S , SAHOO S S , KUMAR S , et al . Optimized Entropy Based Image Segmentation [C]. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA) . 13 - 14 , 2020, Gunupur, India. IEEE , 2020: 1 - 6 . doi: 10.1109/iccsea49143.2020.9132959 http://dx.doi.org/10.1109/iccsea49143.2020.9132959
ABDEL-KHALEK S , ISHAK AB , OMER OA , et al . A two-dimensional image segmentation method based on genetic algorithm and entropy [J]. Optik , 2017 , 131 : 414 - 422 . doi: 10.1016/j.ijleo.2016.11.039 http://dx.doi.org/10.1016/j.ijleo.2016.11.039
刘松涛 , 刘振兴 , 姜康辉 . 基于模糊Renyi熵和区域增长的图像目标分割方法 [J]. 系统工程与电子技术 , 2018 , 40 ( 8 ): 1693 - 1701 . doi: 10.3969/j.issn.1001-506X.2018.08.04 http://dx.doi.org/10.3969/j.issn.1001-506X.2018.08.04
LIU S T , LIU Z X , JIANG K H . Image target segmentation method based on fuzzy Renyi entropy and region growing [J]. Systems Engineering and Electronics , 2018 , 40 ( 8 ): 1693 - 1701 . (in Chinese) . doi: 10.3969/j.issn.1001-506X.2018.08.04 http://dx.doi.org/10.3969/j.issn.1001-506X.2018.08.04
WANG Y , XU X . An improved level set method to image segmentation tation based on saliency [J]. Journal of Information Processing Systems , 2019 , 15 ( 1 ): 7 - 21 .
HE C M , WANG X B , DENG L Z , et al . Image Threshold Segmentation Based on GLLE Histogram [C]. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) . 14 - 17 , 2019, Atlanta, GA, USA. IEEE , 2019: 410 - 415 . doi: 10.1109/ithings/greencom/cpscom/smartdata.2019.00088 http://dx.doi.org/10.1109/ithings/greencom/cpscom/smartdata.2019.00088
LEI B , FAN J . Adaptive granulation Renyi rough entropy image thresholding method with nested optimization [J]. Expert Systems With Applications , 2022 , 203 : 117378 . doi: 10.1016/j.eswa.2022.117378 http://dx.doi.org/10.1016/j.eswa.2022.117378
NASON G P , SILVERMAN B W . The Stationary Wavelet Transform and Some Statistical Applications [M]. Wavelets and Statistics . New York, NY : Springer New York , 1995 : 281 - 299 . doi: 10.1007/978-1-4612-2544-7_17 http://dx.doi.org/10.1007/978-1-4612-2544-7_17
薛婷 , 钟麦英 . 基于SWT与等价空间的LDTV系统故障检测 [J]. 自动化学报 , 2017 , 43 ( 11 ): 1920 - 1930 . doi: 10.16383/j.aas.2017.c160479 http://dx.doi.org/10.16383/j.aas.2017.c160479
XUE T , ZHONG M Y . SWT and parity space based fault detection for linear discrete time-varying systems [J]. Acta Automatica Sinica , 2017 , 43 ( 11 ): 1920 - 1930 . (in Chinese) . doi: 10.16383/j.aas.2017.c160479 http://dx.doi.org/10.16383/j.aas.2017.c160479
RAMÍREZ-REYES A , HERNÁNDEZ-MONTOYA A , HERRERA-CORRAL G , et al . Determining the entropic index q of tsallis entropy in images through redundancy [J]. Entropy , 2016 , 18 ( 8 ): 299 . doi: 10.3390/e18080299 http://dx.doi.org/10.3390/e18080299
CAO X H , LI T H , LI H L , et al . A robust parameter-free thresholding method for image segmentation [J]. IEEE Access , 2018 , 7 : 3448 - 3458 . doi: 10.1109/access.2018.2889013 http://dx.doi.org/10.1109/access.2018.2889013
TRUONG M T N , KIM S . Automatic image thresholding using Otsu's method and entropy weighting scheme for surface defect detection [J]. Soft Computing , 2018 , 22 ( 13 ): 4197 - 4203 . doi: 10.1007/s00500-017-2709-1 http://dx.doi.org/10.1007/s00500-017-2709-1
JIA X H , LEI T , DU X G , et al . Robust self-sparse fuzzy clustering for image segmentation [J]. IEEE Access , 2020 , 8 : 146182 - 146195 . doi: 10.1109/access.2020.3015270 http://dx.doi.org/10.1109/access.2020.3015270
WEI T , WANG X , LI X , et al . Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking [J]. Engineering Applications of Artificial Intelligence , 2022 , 110 : 104672 . doi: 10.1016/j.engappai.2022.104672 http://dx.doi.org/10.1016/j.engappai.2022.104672
XIAO H G , ZHANG B L , LIU R H , et al . Accurate image segmentation based on adaptive distance regularization level set method [J]. International Journal of Wavelets, Multiresolution and Information Processing , 2022 , 20 ( 6 ): 2250033 . doi: 10.1142/s0219691322500333 http://dx.doi.org/10.1142/s0219691322500333
FANG J , LIU H , LIU J , et al . Fuzzy region-based active contour driven by global and local fitting energy for image segmentation [J]. Applied Soft Computing , 2021 , 100 : 106982 . doi: 10.1016/j.asoc.2020.106982 http://dx.doi.org/10.1016/j.asoc.2020.106982
CHICCO D , JURMAN G . The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation [J]. BMC Genomics , 2020 , 21 ( 1 ): 6 . doi: 10.1186/s12864-019-6413-7 http://dx.doi.org/10.1186/s12864-019-6413-7
0
Views
164
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution