1.中国科学院 长春光学精密机械与物理研究所,吉林 长春130033
2.中国科学院大学,北京100049
扫 描 看 全 文
YU Yaqiong, WANG Lingjie, ZHAO Shangnan, et al. Optical design of the off-axis reflective system with wide fov. [J]. Optics and Precision Engineering 31(14):2019-2030(2023)
YU Yaqiong, WANG Lingjie, ZHAO Shangnan, et al. Optical design of the off-axis reflective system with wide fov. [J]. Optics and Precision Engineering 31(14):2019-2030(2023) DOI: 10.37188/OPE.20233114.2019.
宽视场光学成像系统可以增大光学遥感器观测范围、提高探测效率。近年来,基于自由曲面的光学系统设计和制造取得了重大进展,为设计大视场、大相对孔径、高分辨率、高成像质量、无遮挡离轴反射系统提供了可能性。首先,分析了大视场离轴反射系统的像差特性,指出当不断增加系统视场角,尤其是子午方向视场角时,与视场相关的非对称高级像差量将剧烈增加;像场连续性要求更加凸显。接着,提出了一种二维大视场长焦距离轴光学系统设计方法:在常规光学系统初始结构基础上,采用多重结构形式,使子午方向视场角离散化,光学系统特定曲面分解为两个子曲面;并构建系统约束条件,通过约束系统外形尺寸、优化系统结构形式进而完成系统优化设计。最后,基于提出的方法,设计了一款焦距为1 000 mm,像方F数为10,视场角为40°×16°的自由曲面离轴四反光学系统。设计结果表明:该系统全视场范围内成像质量较好,50 lp/mm的特征频率下,400~750 nm可见光波段内光学调制传递函数优于0.26,证明该方法切实有效。
Generally, the observation ranges and detection efficiencies of optical remote sensors can be enhanced using wide-field optical imaging systems. Accordingly, the design and manufacturing of freeform-surface-based optical systems have achieved significant progress recently, making the construction of wide-field, rapid, higher-quality-resolution and -imaging, and obstacle-free off-axis reflection systems feasible. The first part of this paper presents a detailed analysis of the aberration characteristics of an off-axis reflection system. This asymmetric higher level aberration increases dramatically as the field of view (FOV), specifically the meridional FOV, of the system increases. These characteristics place a prominent requirement on image field continuity. The second part of this paper presents a new design approach for two-dimensional (2-D) large FOV optical systems with long focal lengths. First, we built multiple structural forms based on conventional optical systems, leading to a discretized meridional field angle, and with certain specific surfaces of the optical system decomposed into two sub-surfaces. Following this, system optimization was achieved by constraining the system size and improving its structural form. Finally, we designed the off-axis reflective freeform surface optical system. The imaging quality was good within the entire FOV, realizing 2-D large-field imaging of 40°×16°, a focal length of 1 m, and an F-number of 10. The test results prove that the proposed design is good, yielding an optical modulation transfer function of better than 0.26, particularly in the visible spectrum of 400-750 nm with a characteristic frequency of 50 lp/mm.
光学设计离轴反射系统自由曲面二维大视场曲面分解
optical designoff-axis reflection systemfreeform surfacewide field-of-viewsurface decomposition
张兵. 光学遥感信息技术与应用研究综述[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1):1-5.
ZHANG B. A survey of developments on optical remote sensing information technology and applications[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2018, 10(1):1-5.(in Chinese)
薛栋林, 郑立功, 张峰. 基于光学自由曲面的离轴三反光学系统[J]. 光学 精密工程, 2011, 19(12):2813-2820. doi: 10.3788/ope.20111912.2813http://dx.doi.org/10.3788/ope.20111912.2813
XUE D L, ZHENG L G, ZHANG F. Off-axis three-mirror system based on freeform mirror[J]. Opt. Precision Eng., 2011, 19(12):2813-2820.(in Chinese). doi: 10.3788/ope.20111912.2813http://dx.doi.org/10.3788/ope.20111912.2813
ZHANG X, ZHENG L G, HE X, et al. Design and Fabrication of Imaging Optical Systems with Freeform Surfaces[C]. SPIE Optical Engineering + Applications. Proc SPIE 8486, Current Developments in Lens Design and Optical Engineering XIII, San Diego, California, USA. 2012, 8486: 46-55. doi: 10.1117/12.928387http://dx.doi.org/10.1117/12.928387
MUSLIMOV E, HUGOT E, JAHN W, et al. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture[J]. Optics Express, 2017, 25(13): 14598. doi: 10.1364/oe.25.014598http://dx.doi.org/10.1364/oe.25.014598
CHRISP M P. Wide Angle Reflective Telescopes with NURBS Freeform Surfaces[C]. Optical Design and Fabrication 2017 (Freeform, IODC, OFT). Denver, Colorado. Washington, D.C.: OSA, 2017. doi: 10.1364/freeform.2017.jtu3a.2http://dx.doi.org/10.1364/freeform.2017.jtu3a.2
TANG R R, ZHANG B Q, JIN G F, et al. Multiple surface expansion method for design of freeform imaging systems[J]. Optics Express, 2018, 26(3): 2983. doi: 10.1364/oe.26.002983http://dx.doi.org/10.1364/oe.26.002983
姚艳霞, 袁群, 陈露, 等. 结合面型和视场优化策略的自由曲面设计方法[J]. 红外与激光工程, 2018, 47(10): 1018001. doi: 10.3788/irla201847.1018001http://dx.doi.org/10.3788/irla201847.1018001
YAO Y X, YUAN Q, CHEN L, et al. Freeform surface design method combined with surface and field-of-view optimization[J]. Infrared and Laser Engineering, 2018, 47(10): 1018001.(in Chinese). doi: 10.3788/irla201847.1018001http://dx.doi.org/10.3788/irla201847.1018001
赵宇宸, 何欣, 张凯, 等. 轻小型大视场自由曲面离轴光学系统设计[J]. 红外与激光工程, 2018, 47(12): 1218001. doi: 10.3788/irla201847.1218001http://dx.doi.org/10.3788/irla201847.1218001
ZHAO Y C, HE X, ZHANG K, et al. Optical design of miniaturized and large field of view off-axis optical system based on freeform surface[J]. Infrared and Laser Engineering, 2018, 47(12): 1218001.(in Chinese). doi: 10.3788/irla201847.1218001http://dx.doi.org/10.3788/irla201847.1218001
MENG Q Y, WANG H Y, LIANG W J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view[J]. Applied Optics, 2019, 58(3): 609-615. doi: 10.1364/ao.58.000609http://dx.doi.org/10.1364/ao.58.000609
WU W, JIN G, ZHU J. Optical design of the freeform reflective imaging system with wide rectangular FOV and low F-number[J]. Results in Physics, 2019, 15: 102688. doi: 10.1016/j.rinp.2019.102688http://dx.doi.org/10.1016/j.rinp.2019.102688
操超, 廖胜, 廖志远, 等. 基于自由曲面的大视场离轴反射光学系统设计[J]. 光学学报, 2020, 40(8): 0808001. doi: 10.3788/aos202040.0808001http://dx.doi.org/10.3788/aos202040.0808001
CAO C, LIAO S, LIAO Z Y, et al. Design of off-axis reflective optical system with large field of view based on free-form surface[J]. Acta Optica Sinica, 2020, 40(8): 0808001.(in Chinese). doi: 10.3788/aos202040.0808001http://dx.doi.org/10.3788/aos202040.0808001
刘璐, 胡斌, 周峰, 等. 二维大视场紧凑型离轴四反光学系统设计[J]. 航天返回与遥感, 2020, 41(1):73-84. doi: 10.3969/j.issn.1009-8518.2020.01.009http://dx.doi.org/10.3969/j.issn.1009-8518.2020.01.009
LIU L, HU B, ZHOU F, et al. Design of compact off-axis four-mirror optical system with two-dimensional large field of view[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1):73-84.(in Chinese). doi: 10.3969/j.issn.1009-8518.2020.01.009http://dx.doi.org/10.3969/j.issn.1009-8518.2020.01.009
陈炳旭, 廖志远, 操超, 等. 大视场大相对孔径自由曲面成像系统设计[J]. 红外与激光工程, 2020, 49(8): 3788/IRLA20200005. doi: 10.3788/irla20200005http://dx.doi.org/10.3788/irla20200005
CHEN B X, LIAO Z Y, CAO C, et al. Design of freeform surface imaging system with large field of view and large relative aperture[J]. Infrared and Laser Engineering, 2020, 49(8): 3788/IRLA20200005.(in Chinese). doi: 10.3788/irla20200005http://dx.doi.org/10.3788/irla20200005
NI J, YANG T, CHENG D, et al. Design method of wide field-of-view imaging systems using Gaussian radial basis functions freeform surfaces[J]. Applied Optics, 2021, 60(15): 4491-4501. doi: 10.1364/ao.423022http://dx.doi.org/10.1364/ao.423022
谢运强. 基于矢量像差理论的宽视场离轴反射系统的研究[D]. 中国科学院大学 (中国科学院长春光学精密机械与物理研究所), 2022.
XIE Y Q. Research of Off-axis Reflected System with Wide Field of View Based on Vector Aberration Theory[D]. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
THOMPSON K. Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry[J]. Journal of the Optical Society of America A, 2005, 22(7): 1389. doi: 10.1364/josaa.22.001389http://dx.doi.org/10.1364/josaa.22.001389
THOMPSON K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the comatic aberrations[J]. Journal of the Optical Society of America A, 2010, 27(6): 1490. doi: 10.1364/josaa.27.001490http://dx.doi.org/10.1364/josaa.27.001490
THOMPSON K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: spherical aberration[J]. Journal of the Optical Society of America A, 2009, 26(5): 1090-1100. doi: 10.1364/josaa.26.001090http://dx.doi.org/10.1364/josaa.26.001090
THOMPSON K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: the astigmatic aberrations[J]. Journal of the Optical Society of America A, 2011, 28(5): 821. doi: 10.1364/josaa.28.000821http://dx.doi.org/10.1364/josaa.28.000821
MAHAJAN V N. Zernike Polynomials and Aberration Balancing[C]. Optical Science and Technology, SPIE's 48th Annual Meeting. Proc SPIE 5173, Current Developments in Lens Design and Optical Engineering IV, San Diego, California, USA. 2003, 5173: 517302. doi: 10.1117/12.511384http://dx.doi.org/10.1117/12.511384
FUERSCHBACH K, ROLLAND J P, THOMPSON K P. Theory of aberration fields for general optical systems with freeform surfaces[J]. Optics Express, 2014, 22(22): 26585. doi: 10.1364/oe.22.026585http://dx.doi.org/10.1364/oe.22.026585
YANG T, CHENG D W, WANG Y T. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces[J]. Optics Express, 2018, 26(6): 7751. doi: 10.1364/oe.26.007751http://dx.doi.org/10.1364/oe.26.007751
BAUER A, SCHIESSER E M, ROLLAND J P. Starting geometry creation and design method for freeform optics[J]. Nature Communications, 2018, 9: 1756. doi: 10.1038/s41467-018-04186-9http://dx.doi.org/10.1038/s41467-018-04186-9
程强, 胡海翔, 李龙响, 等. 离轴光学系统的畸变分析及焦距测量[J]. 光学 精密工程, 2022, 30(22): 2839-2846. doi: 10.37188/ope.20223022.2839http://dx.doi.org/10.37188/ope.20223022.2839
CHENG Q, HU H X, LI L X, et al. Distortion analysis and focal length testing of off-axis optical system[J]. Opt. Precision Eng., 2022, 30(22): 2839-2846.(in Chinese). doi: 10.37188/ope.20223022.2839http://dx.doi.org/10.37188/ope.20223022.2839
0
Views
39
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution