1.长春理工大学 物理学院,吉林 长春 130022
扫 描 看 全 文
WANG Ziheng, LI Jinhua, CHU Xueying, et al. Preparation of Al nanoarray on quartz and fluorescence enhancement performance. [J]. Optics and Precision Engineering 31(14):2052-2059(2023)
WANG Ziheng, LI Jinhua, CHU Xueying, et al. Preparation of Al nanoarray on quartz and fluorescence enhancement performance. [J]. Optics and Precision Engineering 31(14):2052-2059(2023) DOI: 10.37188/OPE.20233114.2052.
针对透明衬底上紫外共振金属纳米阵列制备的技术需求,在不导电石英衬底上,采用电子束曝光制备Al纳米阵列,并对其形貌及性能进行研究。在电子束曝光过程中,引入Cr金属层克服衬底不导电问题。采用曝光剂量测试和加工参数调节优化纳米棒形貌。采用时域有限差分法分析Al纳米棒在325 nm紫外光激发下的电场分布,并以Langmuir-Blodgett(L-B)技术将CdSe/ZnS量子点沉积在Al纳米阵列表面进一步明确其荧光增强性能。结果表明,1 200 μc/cm,2,剂量下制备的Al纳米棒尺寸分布均匀,最终获得了取向互相垂直的四个区域集成的Al纳米阵列。光学性质分析表明,Al纳米棒阵列可使CdSe/ZnS量子点的荧光强度增强约1.7倍。仿真结果表明,紫外光辐照下Al纳米棒末端电场强度明显高于纳米棒两侧,明确了量子点发光增强机理。成功在不导电衬底上获得多取向集成的、对量子点具有显著荧光增强效果的Al纳米阵列,为背光激发下量子点发光调控和偏振调制提供了一种新策略。
To address the difficulties in the preparation of ultraviolet (UV) resonance metal nanoarrays on transparent substrates, Al nanoarrays were prepared by electron beam exposure on a non-conducting quartz substrate and their morphology and properties were studied. A Cr metal layer was introduced to overcome the problem of non-conductivity in the electron beam exposure process. Nanorod morphology was optimized by adjustments to the exposure dose and design parameters. The electric field distribution of Al nanorods (excited by 325 nm UV light) was analyzed by using the finite-difference time-domain method. CdSe/ZnS quantum dots were deposited on the surface of Al nanoarrays by using Langmuir–Blodgett technology for fluorescence performance enhancement. The results indicate uniformity in the size distribution of Al nanorods prepared at a 1 200 μC/cm,2, dose. Four regions with Al nanorods in mutually perpendicular orientations were integrated. Optical analysis results indicate that the fluorescence intensity of CdSe/ZnS quantum dots could be enhanced approximately 1.7 times by the Al nanorod array. Simulation results show that, under UV radiation, the electric field intensities at the ends of the nanorods were higher than at their sides, thereby revealing their influence on the fluorescence enhancement of the quantum dots. The multi-oriented integrated Al nanoarray with quantum dot fluorescence enhancement effects, which was prepared on a non-conducting substrate, provides a new strategy for the luminescence and polarization modulation of quantum dots under backlight excitation.
透明衬底量子点荧光增强时域有限差分法
transparent substratequantum dotsfluorescence enhancementFDTD method
YAMADA I, TAKANO K, HANGYO M, et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3): 274-276. doi: 10.1364/ol.34.000274http://dx.doi.org/10.1364/ol.34.000274
褚金奎, 康维东, 曾祥伟, 等. 基于柔性纳米压印工艺制备中红外双层金属纳米光栅[J]. 光学 精密工程, 2017, 25(12): 3034-3040. doi: 10.3788/ope.20172512.3034http://dx.doi.org/10.3788/ope.20172512.3034
CHU J K, KANG W D, ZENG X W, et al. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography[J]. Opt. Precision Eng., 2017, 25(12): 3034-3040.(in Chinese). doi: 10.3788/ope.20172512.3034http://dx.doi.org/10.3788/ope.20172512.3034
任升, 刘丽炜, 李金华, 等. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1):31-46. doi: 10.3788/co.20181101.0031http://dx.doi.org/10.3788/co.20181101.0031
REN S, LIU L W, LI J H, et al. Advances in the local field enhancement at nanoscale[J]. Chinese Journal of Optics, 2018, 11(1):31-46.(in Chinese). doi: 10.3788/co.20181101.0031http://dx.doi.org/10.3788/co.20181101.0031
ZHAO S X, YU Y Y, ZHANG B Y, et al. Dual-mode circularly polarized light emission and metal-enhanced fluorescence realized by the luminophore-chiral cellulose nanocrystal interfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59132-59141. doi: 10.1021/acsami.1c19404http://dx.doi.org/10.1021/acsami.1c19404
FULARZ A, STOGIANNIS D, RICE J H. Cellulose acetate-based plasmonic crystals for surface-enhanced Raman and fluorescence spectroscopy[J]. ACS Materials Au, 2022, 2(4): 453-463. doi: 10.1021/acsmaterialsau.2c00013http://dx.doi.org/10.1021/acsmaterialsau.2c00013
LI Z D, KANG H S, LONG M Y, et al. Tunable near-field enhancement in structure-adjustable Au nanodumbbells for improved SERS and double-resonantly enhanced SHG[J]. The Journal of Physical Chemistry C, 2022, 126(29): 12129-12135. doi: 10.1021/acs.jpcc.2c03644http://dx.doi.org/10.1021/acs.jpcc.2c03644
袁纵横, 苏睿, 黄静. 宽谐振区光学纳米天线的谐振[J]. 光学 精密工程, 2013, 21(6): 1518-1523. doi: 10.3788/ope.20132106.1518http://dx.doi.org/10.3788/ope.20132106.1518
YUAN Z H, SU R, HUANG J. Resonance of optical nano-antenna with wider resonant areas[J]. Opt. Precision Eng., 2013, 21(6): 1518-1523. (in Chinese). doi: 10.3788/ope.20132106.1518http://dx.doi.org/10.3788/ope.20132106.1518
SONG J H, ATAY T, SHI S F, et al. Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons[J]. Nano Letters, 2005, 5(8): 1557-1561. doi: 10.1021/nl050813rhttp://dx.doi.org/10.1021/nl050813r
YE J H, HUANG C L, HUANG K Y, et al. P-28: development of low-resistivity gate-metal process for LTPS-TFT-array backplane applications[J]. SID Symposium Digest of Technical Papers, 2022, 53(1): 1141-1144. doi: 10.1002/sdtp.15703http://dx.doi.org/10.1002/sdtp.15703
QI F L, JEONG K J, GONG J X, et al. Modulation of nano-superstructures and their optical properties[J]. Accounts of Chemical Research, 2022, 55(17): 2425-2438. doi: 10.1021/acs.accounts.2c00202http://dx.doi.org/10.1021/acs.accounts.2c00202
姜利英, 杭欣欣, 张培, 等. 用于检测多巴胺的荧光增强型适体传感器[J]. 光学 精密工程, 2019, 27(9): 50-54. doi: 10.3788/ope.20192709.1943http://dx.doi.org/10.3788/ope.20192709.1943
JIANG L Y, HANG X X, ZHANG P, et al. Fluorescence-enhanced aptamer sensor for dopamine detection[J]. Opt. Precision Eng., 2019, 27(9): 50-54.(in Chinese). doi: 10.3788/ope.20192709.1943http://dx.doi.org/10.3788/ope.20192709.1943
QIAN LX, LI W, GU Z, et al. Ultra-Sensitive β-Ga2O3 Solar-Blind Photodetector with High-Density Al@Al2O3 Core-Shell Nanoplasmonic Array[J]. Advanced Optical Materials, 2022, 10(12): 2102055. doi: 10.1002/adom.202102055http://dx.doi.org/10.1002/adom.202102055
BORISOV V I, LIZUNOVA A A, MAZHARENKO A K, et al. Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics[J]. Journal of Physics: Conference Series, 2020, 1695(1): 012021. doi: 10.1088/1742-6596/1695/1/012021http://dx.doi.org/10.1088/1742-6596/1695/1/012021
FORESTIERE C, HANDIN A, NEGRO L D. Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas[J]. Plasmonics, 2014, 9(3): 715-725. doi: 10.1007/s11468-014-9691-6http://dx.doi.org/10.1007/s11468-014-9691-6
SULTANGAZIYEV A, AKHMETOVA A, KUNUSHPAYEVA Z, et al. Aluminum foil as a substrate for metal enhanced fluorescence of bacteria labelled with quantum dots, shows very large enhancement and high contrast[J]. Sensing and Bio-Sensing Research, 2020, 28: 100332. doi: 10.1016/j.sbsr.2020.100332http://dx.doi.org/10.1016/j.sbsr.2020.100332
KRAUSE B, PHAM M T, LUONG H M, et al. Periodic nanohole arrays with enhanced lasing and spontaneous emissions for low-cost plasmonic devices[J]. ACS Applied Nano Materials, 2022, 5(1): 1185-1191. doi: 10.1021/acsanm.1c03796http://dx.doi.org/10.1021/acsanm.1c03796
ZHAO Q, YANG H, NIE B B, et al. Wafer-scale and cost-effective manufacturing of controllable nanogap arrays for highly sensitive SERS sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3580-3590. doi: 10.1021/acsami.1c22465http://dx.doi.org/10.1021/acsami.1c22465
DORH N, SARUA A, STOKES J, et al. Fluorescent emission enhancement by aluminium nanoantenna arrays in the near UV[J]. Journal of Optics, 2016, 18(7): 075008. doi: 10.1088/2040-8978/18/7/075008http://dx.doi.org/10.1088/2040-8978/18/7/075008
LI Z Y, XIA Y N. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering[J]. Nano Letters, 2010, 10(1): 243-249. doi: 10.1021/nl903409xhttp://dx.doi.org/10.1021/nl903409x
LV Z, LIU L, ZHANG Y X, et al. Comprehensive study on the optical properties of graded Al component AlxGA1-xn nanostructures for UV photocathode[J]. Superlattices and Microstructures, 2020, 147: 106695. doi: 10.1016/j.spmi.2020.106695http://dx.doi.org/10.1016/j.spmi.2020.106695
QIU Y, PAN Z, CHEN H, et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting[J]. Science Bulletin, 2019, 64(18): 1348-1380. doi: 10.1016/j.scib.2019.07.017http://dx.doi.org/10.1016/j.scib.2019.07.017
WANG H Y, GUO Y Y, HAO H X, et al. Bright CdSe/CdS quantum dot light-emitting diodes with modulated carrier dynamics via the local Kirchhoff law[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56476-56484. doi: 10.1021/acsami.1c17152http://dx.doi.org/10.1021/acsami.1c17152
RADCHANKA A, HRYBOUSKAYA V, IODCHIK A, et al. Zeta potential-based control of CdSe/ZnS quantum dot photoluminescence[J]. The Journal of Physical Chemistry Letters, 2022, 13(22): 4912-4917. doi: 10.1021/acs.jpclett.2c00841http://dx.doi.org/10.1021/acs.jpclett.2c00841
PALIK E D. Handbook of Optical Constants of Solids, Volume 1[M]. Academic Press, 1985. doi: 10.1016/b978-0-08-054721-3.50005-8http://dx.doi.org/10.1016/b978-0-08-054721-3.50005-8
HU J L, CHEN L, LIAN Z C, et al. Deep-ultraviolet-blue-light surface plasmon resonance of Al and Alcore/Al2O3shell in spherical and cylindrical nanostructures[J]. The Journal of Physical Chemistry C, 2012, 116(29): 15584-15590. doi: 10.1021/jp305844ghttp://dx.doi.org/10.1021/jp305844g
RIEGSINGER S, POPESCU R, GERTHSEN D, et al. Room-temperature liquid-phase synthesis of aluminium nanoparticles[J]. Chemical Communications (Cambridge, England), 2022, 58(54): 7499-7502. doi: 10.1039/d2cc01846bhttp://dx.doi.org/10.1039/d2cc01846b
徐良敏, 张正龙, 蔡晓燕, 等. 金属表面荧光增强的物理增强机制[J]. 发光学报, 2009, 30(3): 373-378.
XU L M, ZHANG Z L, CAI X Y, et al. Physical mechanisms of fluorescence enhancement at metal surface[J]. Chinese Journal of Luminescence, 2009, 30(3): 373-378.(in Chinese)
0
Views
17
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution