1.上海大学 精密机械工程系,上海 200444
E-mail: rdy5200@163.com
扫 描 看 全 文
WANG Chi, REN Danyang, CHEN Jinbo, et al. Side-viewing all-fiber lens and its focusing performance for SS-OCT imaging system. [J]. Optics and Precision Engineering 31(15):2171-2180(2023)
WANG Chi, REN Danyang, CHEN Jinbo, et al. Side-viewing all-fiber lens and its focusing performance for SS-OCT imaging system. [J]. Optics and Precision Engineering 31(15):2171-2180(2023) DOI: 10.37188/OPE.20233115.2171.
为研制适用于扫频光学相干断层成像(Swept Source Optical Coherence Tomography,SS-OCT)系统的高性能侧视型全光纤镜头,分析了侧视型光纤镜头的性能影响因素及样品制作方法。对基于梯度折射率(Graded- Index,GRIN)光纤的侧视型全光纤镜头的光学模型进行解析,得出与侧视型全光纤镜头性能相关的特征参数。研究了“单模光纤+无芯光纤+GRIN光纤+转角介质”四段式侧视型镜头各组件长度对其光学聚焦性能的影响,设计各组件的适宜长度范围。最后,制作了外径小至0.5 mm、刚性长度2.75 cm的超小侧视型全光纤镜头样品,通过实验测得镜头的工作距离(0.52 mm)和光斑直径(26.82 μm),与理论分析结果基本一致,并将镜头样品集成于SS-OCT成像系统,获得了清晰的生物组织层析图像。实验结果表明,本文提出的分析方法可用于侧视型全光纤成像镜头结构参数的优化设计。
To develop high-performance side-viewing all-fiber lenses applicable to the swept-source optical coherence tomography (SS-OCT) system, the factors influencing the performance of a type of side-viewing all-fiber lens and the sample production methods were studied. First, the graded-index (GRIN) optical model of the side-viewing full-fiber lens with the GRIN fiber was analyzed, and the graded parameters related to the performance of the side-viewing full-fiber lens were obtained. Second, the effect of the length of each component of the four-stage side-viewing lens “SMF+ NCF+ GRIN fiber + Angle prism” on its optical focusing performance was studied, and the appropriate length range of each component was designed. Finally, an ultrasmall side-viewing all-fiber lens with an outer diameter as small as 0.5 mm and a rigid length of 2.75 cm was fabricated. Experimental results show that the working distance (0.52 mm) and spot diameter (26.82 μm) of the lens are consistent with the theoretical analysis results. The lens sample is integrated into the SS-OCT imaging system to obtain clear tomographic images of biological tissues; thus, the performance of the designed lens is verified. The results indicate that the proposed method can be used to optimize the structural parameters of side-viewing all-fiber imaging lenses.
光学相干断层成像光纤镜头梯度折射率光纤侧视成像
optical coherence tomographyoptical fiber lensGRIN fiberside-viewing
KIM J, BROWN W, MAHER J R, et al. Functional optical coherence tomography: principles and progress[J]. Physics in Medicine and Biology, 2015, 60(10): R211-R237. doi: 10.1088/0031-9155/60/10/r211http://dx.doi.org/10.1088/0031-9155/60/10/r211
JIA H B, DAI J N, HE L P, et al. EROSION III: a multicenter RCT of OCT-guided reperfusion in STEMI with early infarct artery patency[J]. JACC Cardiovascular Interventions, 2022, 15(8): 846-856. doi: 10.1016/j.jcin.2022.01.298http://dx.doi.org/10.1016/j.jcin.2022.01.298
TEARNEY G J, BOPPART S A, BOUMA B E, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 1996, 21(7): 543-545. doi: 10.1364/ol.21.000543http://dx.doi.org/10.1364/ol.21.000543
XIE T Q, LIU G J, KREUTER K A, et al. In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance[J]. Journal of Biomedical Optics, 2009, 14(6): 064045. doi: 10.1117/1.3275478http://dx.doi.org/10.1117/1.3275478
LORENSER D, YANG X, KIRK R W, et al. Ultrathin side-viewing needle probe for optical coherence tomography[J]. Optics Letters, 2011, 36(19): 3894-3896. doi: 10.1364/ol.36.003894http://dx.doi.org/10.1364/ol.36.003894
YANG X J, LORENSER D, MCLAUGHLIN R A, et al. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe[J]. Biomedical Optics Express, 2014, 5(1): 136-148. doi: 10.1364/boe.5.000136http://dx.doi.org/10.1364/boe.5.000136
RAMAKONAR H, QUIRK B C, KIRK R W, et al. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans[J]. Science Advances, 2018, 4(12): eaav4992. doi: 10.1126/sciadv.aav4992http://dx.doi.org/10.1126/sciadv.aav4992
YUAN W, CHEN D F, SARABIA-ESTRADA R, et al. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo[J]. Science Advances, 2020, 6(15): eaaz9664. doi: 10.1126/sciadv.aaz9664http://dx.doi.org/10.1126/sciadv.aaz9664
KANG J Q, ZHU R, SUN Y X, et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography[J]. Opto-Electronic Advances, 2022, 5(3): 200050. doi: 10.29026/oea.2022.200050http://dx.doi.org/10.29026/oea.2022.200050
WANG C, BI S B, XIA X Q, et al. Further analysis of focusing performance of an ultra-small gradient-index fiber probe[J]. Optical Engineering, 2014, 53(1): 013106. doi: 10.1117/1.oe.53.1.013106http://dx.doi.org/10.1117/1.oe.53.1.013106
WANG C, KUANG B, WEN Z L, et al. Further study of coupling efficiency of ultra-small gradient-index fiber probe[J]. Optik, 2019, 184: 304-312. doi: 10.1016/j.ijleo.2019.03.018http://dx.doi.org/10.1016/j.ijleo.2019.03.018
WANG C, FANG C, TANG Z, et al. Analytical method for designing gradient-index fiber probes[J]. Optical Engineering, 2011, 50(9): 62-65. doi: 10.1117/1.3626206http://dx.doi.org/10.1117/1.3626206
王驰, 许婷婷, 毕书博, 等. 测量自聚焦光纤透镜聚焦常数的曲线拟合算法[J]. 光学 精密工程, 2015, 23(12):3309-3315. doi: 10.3788/ope.20152312.3309http://dx.doi.org/10.3788/ope.20152312.3309
WANG CH, XU T T, BI SH B, et al. Curve-fitting algorithm of measuring focusing constant of gradient-index fiber lens[J]. Optics and Precision Engineering, 2015, 23(12):3309-3315. (in Chinese). doi: 10.3788/ope.20152312.3309http://dx.doi.org/10.3788/ope.20152312.3309
王驰, 陈伟, 孙建美, 等. 基于超小GRIN光纤镜头的MEMS光纤声传感器及性能测试方法[J]. 光学 精密工程, 2022, 30(12): 1406-1417. doi: 10.37188/OPE.20223012.1406http://dx.doi.org/10.37188/OPE.20223012.1406
WANG CH, CHEN W, SUN J M, et al. MEMS fiber optic acoustic sensor and performance testing method based on ultra-small GRIN fiber lens[J]. Optics and Precision Engineering, 2022, 30(12):1406-1417. (in Chinese). doi: 10.37188/OPE.20223012.1406http://dx.doi.org/10.37188/OPE.20223012.1406
KOGELNIK H, LI T. Laser beams and resonators[J]. Proceedings of the IEEE, 1966, 54(10): 1312-1329. doi: 10.1109/proc.1966.5119http://dx.doi.org/10.1109/proc.1966.5119
WANG C, MAO Y X, TANG Z, et al. Numerical analysis of GRIN lens based miniature probes for optical coherence tomography[J]. Optics and Precision Engineering, 2011, 19(9): 2300-2307. doi: 10.3788/ope.20111909.2300http://dx.doi.org/10.3788/ope.20111909.2300
RYU S Y, CHOI H Y, NA J, et al. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography[J]. Applied Optics, 2008, 47(10): 1510-1516. doi: 10.1364/ao.47.001510http://dx.doi.org/10.1364/ao.47.001510
MAO Y X, CHANG S D, SHERIF S, et al. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging[J]. Applied Optics, 2007, 46(23): 5887. doi: 10.1364/ao.46.005887http://dx.doi.org/10.1364/ao.46.005887
WU T, PAN R B, CAO K, et al. Side-viewing endoscopic imaging probe for swept source optical coherence tomography[J]. Optics Communications, 2020, 467: 125596. doi: 10.1016/j.optcom.2020.125596http://dx.doi.org/10.1016/j.optcom.2020.125596
杨帆, 刘连圣, 翟祚盼, 等. 发散扫描模式下OCT图像畸变分析与矫正[J]. 光学 精密工程, 2021, 29(8):1968-1975. doi: 10.37188/OPE.20212908.1968http://dx.doi.org/10.37188/OPE.20212908.1968
YANG F, LIU L SH, ZHAI Z P, et al. Distortion analysis and reconstruction of OCT image in sector scan mode[J]. Optics and Precision Engineering, 2021, 29(8):1968-1975.(in Chinese). doi: 10.37188/OPE.20212908.1968http://dx.doi.org/10.37188/OPE.20212908.1968
0
Views
49
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution