1.中国科学院 微电子研究所,北京 100029
2.中国科学院大学,北京 101408
扫 描 看 全 文
MENG Yuxuan, DONG Dengfeng, ZHOU Weihu, et al. High-precision phase discrimination for high-frequency phase laser ranging system. [J]. Optics and Precision Engineering 31(15):2193-2202(2023)
MENG Yuxuan, DONG Dengfeng, ZHOU Weihu, et al. High-precision phase discrimination for high-frequency phase laser ranging system. [J]. Optics and Precision Engineering 31(15):2193-2202(2023) DOI: 10.37188/OPE.20233115.2193.
相位测距是一种非常重要的绝对测距手段,是大尺寸精密测量的重要保障。提高激光调制频率并采用高性能器件实现高频采样分析是提升相位激光测距精度最有效的方式之一。针对高性能器件的最大采样频率总是受限,难以满足高调制频率采样的难题,分析验证了欠采样方法用于相位测距的可行性,同时仿真分析了全相位傅里叶频谱分析法(all-phase Fast Fourier Transform,apFFT)提高鉴相精度的优势。在此基础上,提出“欠采样+ apFFT”的方法,并构建了激光相位测距的鉴相系统。当调制频率为201 MHz,欠采样频率为100 MHz时,系统鉴相精度高于±0.04°,对应的测距精度为±0.08 mm。实验结果表明,基于“欠采样+apFFT”的相位测距方法具有高精度、抗干扰能力强等优势,在科学研究与工程应用中具有重要价值。
Phase laser ranging is an important means of absolute ranging and an important guarantee for large-scale precision measurement. One of the most effective ways to improve the precision of phase laser ranging is to increase the laser modulation frequency and use high-performance devices to achieve high-frequency sampling analysis. However, the maximum sampling frequency of high-performance devices is limited. To solve the problem that existing devices have difficulty in the sampling of high modulation frequencies, the feasibility of an undersampling method for phase ranging was analyzed and verified. The advantages of all-phase fast Fourier transform (apFFT) analysis was examined to improve the precision of phase laser detection. Based on this idea, the method of undersampling and apFFT was developed, and a phase detection system for laser phase ranging was constructed. When the modulation frequency is 201 MHz and the undersampling frequency is 100 MHz, the system phase discrimination accuracy is higher than ±0.04°, and the corresponding ranging accuracy is approximately ±0.08 mm. The experimental results show that the phase ranging method based on undersampling and apFFT has the comprehensive advantages of high accuracy and strong anti-interference ability, making it valuable for scientific research and engineering applications.
相位测距欠采样全相位频谱分析法高精度鉴相系统
phase rangingunder-samplingall-phase fast fourier transformhigh precisionphase discrimination system
董登峰, 周维虎, 纪荣祎, 等. 激光跟踪仪精密跟踪系统的设计[J]. 光学 精密工程, 2016, 24(2): 309-318. doi: 10.3788/ope.20162402.0309http://dx.doi.org/10.3788/ope.20162402.0309
DONG D F, ZHOU W H, JI R Y, et al. Design of precise tracking system of laser tracker[J]. Opt. Precision Eng., 2016, 24(2): 309-318.(in Chinese). doi: 10.3788/ope.20162402.0309http://dx.doi.org/10.3788/ope.20162402.0309
BÉCHADERGUE B, CHASSAGNE L, GUAN H Y. Visible light phase-shift rangefinder for platooning applications[C]. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).14,2016, Rio de Janeiro, Brazil. IEEE, 2016: 2462-2468. doi: 10.1109/itsc.2016.7795952http://dx.doi.org/10.1109/itsc.2016.7795952
JUNG J W, PARK J, KANG T, et al. Mobile robot path planning using a laser range finder for environments with transparent obstacles[J]. Applied Sciences, 2020, 10, 2799. doi: 10.3390/app10082799http://dx.doi.org/10.3390/app10082799
FEDORENKO A V, VORONA I O, MASLOV V P. Investigation of Ge p-i-n photodetector as a part of pulsed laser rangefinder prototype[J]. Semiconductor Physics Quantum Electronics & Optoelectronics, 2021, 24(1): 100-104. doi: 10.15407/spqeo24.01.100http://dx.doi.org/10.15407/spqeo24.01.100
POUJOULY S, JOURNET B, MILLER D. Laser range finder based on fully digital phase-shift measurement[C]. IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).2426,1999, Venice, Italy. IEEE, 2002: 1773-1776.
张赫, 乔川, 匡海鹏. 基于激光测距的机载光电成像系统目标定位[J]. 光学 精密工程, 2019, 27(1): 8-16. doi: 10.3788/ope.20192701.0008http://dx.doi.org/10.3788/ope.20192701.0008
ZHANG H, QIAO CH, KUANG H P. Target geo-location based on laser range finder for airborne electro-optical imaging systems[J]. Opt. Precision Eng., 2019, 27(1): 8-16.(in Chinese). doi: 10.3788/ope.20192701.0008http://dx.doi.org/10.3788/ope.20192701.0008
PENG X Y, YANG J Q, WU C H, et al. The method of improving the measurement accuracy of infrared laser ranging system[C]. Proc SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 2021, 11763: 1968-1973. doi: 10.1117/12.2587449http://dx.doi.org/10.1117/12.2587449
MA H B, LUO Y, HE Y, et al. The short-range, high-accuracy compact pulsed laser ranging system[J]. Sensors (Basel, Switzerland), 2022, 22(6): 2146. doi: 10.3390/s22062146http://dx.doi.org/10.3390/s22062146
滕晓. 用于相位式激光测距的欠采样鉴相方法研究及实现[D]. 哈尔滨: 哈尔滨理工大学, 2020.
TENG X. Research and Implementation of Undersampling Phase Discrimination Method for Phase Laser Ranging[D]. Harbin: Harbin University of Science and Technology, 2020. (in Chinese)
王心遥, 张珂殊. 基于欠采样的激光测距数字鉴相方法[J]. 红外与激光工程, 2013, 42(5): 1330-1337. doi: 10.3969/j.issn.1007-2276.2013.05.041http://dx.doi.org/10.3969/j.issn.1007-2276.2013.05.041
WANG X Y, ZHANG K SH. Digital phase-shift measuring methods based on sub-sampling in laser range finder[J]. Infrared and Laser Engineering, 2013, 42(5): 1330-1337.(in Chinese). doi: 10.3969/j.issn.1007-2276.2013.05.041http://dx.doi.org/10.3969/j.issn.1007-2276.2013.05.041
姜成昊, 杨进华, 张丽娟, 等. 基于激光拍频高准确度相位式测距方法[J]. 光子学报, 2014, 43(9): 162-166. doi: 10.3788/gzxb20144309.0912006http://dx.doi.org/10.3788/gzxb20144309.0912006
JIANG CH H, YANG J H, ZHANG L J, et al. High-precision phase-shift laser range finder system based on laser beat-frequency[J]. Acta Photonica Sinica, 2014, 43(9): 162-166.(in Chinese). doi: 10.3788/gzxb20144309.0912006http://dx.doi.org/10.3788/gzxb20144309.0912006
贾方秀, 丁振良, 袁锋. 相位法激光测距接收系统[J]. 光学 精密工程, 2009, 17(10): 2377-2384. doi: 10.3321/j.issn:1004-924X.2009.10.005http://dx.doi.org/10.3321/j.issn:1004-924X.2009.10.005
JIA F X, DING ZH L, YUAN F. Phase-shift laser range finder receiver system[J]. Opt. Precision Eng., 2009, 17(10): 2377-2384.(in Chinese). doi: 10.3321/j.issn:1004-924X.2009.10.005http://dx.doi.org/10.3321/j.issn:1004-924X.2009.10.005
BI H, JIANG C L, ZHANG B C, et al. Radar change imaging with undersampled data based on matrix completion and Bayesian compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1546-1550. doi: 10.1109/lgrs.2015.2412677http://dx.doi.org/10.1109/lgrs.2015.2412677
孙懋珩, 赵雯. 应用欠采样原理提高相位式激光测距精度[J]. 红外与激光工程, 2009, 38(1): 70-73. doi: 10.3969/j.issn.1007-2276.2009.01.016http://dx.doi.org/10.3969/j.issn.1007-2276.2009.01.016
SUN M H, ZHAO W. Precision improvement of undersampling theory using phasic laser rangefinder[J]. Infrared and Laser Engineering, 2009, 38(1): 70-73.(in Chinese). doi: 10.3969/j.issn.1007-2276.2009.01.016http://dx.doi.org/10.3969/j.issn.1007-2276.2009.01.016
王选钢, 缑宁祎, 张珂殊. 相位式激光测距谱分析鉴相的无偏改进[J]. 光学 精密工程, 2012, 20(4): 888-895. doi: 10.3788/ope.20122004.0888http://dx.doi.org/10.3788/ope.20122004.0888
WANG X G, GOU N Y, ZHANG K SH. Unbiased improvement of spectrum analysis phase discrimination for phase-shift laser range finder[J]. Opt. Precision Eng., 2012, 20(4): 888-895.(in Chinese). doi: 10.3788/ope.20122004.0888http://dx.doi.org/10.3788/ope.20122004.0888
王兆华, 黄翔东, 杨尉. 全相位FFT相位测量法[J]. 世界科技研究与发展, 2007, 29(4): 28-32, 27. doi: 10.3969/j.issn.1006-6055.2007.04.006http://dx.doi.org/10.3969/j.issn.1006-6055.2007.04.006
WANG ZH H, HUANG X D, YANG W. The measuring phase method of all-phase FFT[J]. World Sci-Tech R & D, 2007, 29(4): 28-32, 27.(in Chinese). doi: 10.3969/j.issn.1006-6055.2007.04.006http://dx.doi.org/10.3969/j.issn.1006-6055.2007.04.006
郭天茂, 刘柯, 缪寅宵, 等. 全相位FFT频率测量在调频激光测距技术中的应用[J]. 宇航计测技术, 2019, 39(2): 45-50.
GUO T M, LIU K, MIAO Y X, et al. Application of all phase FFT frequency measurement in FMCW laser ranging technology[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(2): 45-50.(in Chinese)
林巍峣, 刘士湛. “通信原理”中采样与信道容量的直观教学[J]. 电气电子教学学报, 2022, 44(5): 33-36.
LIN W Y, LIU SH ZH. Intuitive teaching of sampling and channel capacity in communication principle[J]. Journal of Electrical and Electronic Education, 2022, 44(5): 33-36.(in Chinese)
陈祚海. 无棱镜相位式激光测距系统的设计与实现[D]. 苏州: 苏州大学, 2011.
CHEN Z H. Design and Implementation of Prism-free Phase Laser Ranging System[D]. Suzhou: Soochow University, 2011. (in Chinese)
潘映伶, 纪荣祎, 高超, 等. 矢量内积法高速相位式激光测距技术[J]. 红外与激光工程, 2022, 51(4): 269-275.
PAN Y L, JI R Y, GAO CH, et al. High-speed phase laser ranging technology based on vector inner product method[J]. Infrared and Laser Engineering, 2022, 51(4): 269-275.(in Chinese)
黄翔东, 王兆华, 罗蓬, 等. 全相位FFT密集谱识别与校正[J]. 电子学报, 2011, 39(1): 172-177.
HUANG X D, WANG ZH H, LUO P, et al. Discrimination and correction for dense all-phase FFT spectrums[J]. Acta Electronica Sinica, 2011, 39(1): 172-177.(in Chinese)
范进, 金声震, 孙才红. 超高速FFT处理器的设计与实现[J]. 光学 精密工程, 2009, 17(9): 2241-2246. doi: 10.3321/j.issn:1004-924X.2009.09.026http://dx.doi.org/10.3321/j.issn:1004-924X.2009.09.026
FAN J, JIN SH ZH, SUN C H. Design and implementation of hyper-speed FFT processor[J]. Opt. Precision Eng., 2009, 17(9): 2241-2246.(in Chinese). doi: 10.3321/j.issn:1004-924X.2009.09.026http://dx.doi.org/10.3321/j.issn:1004-924X.2009.09.026
0
Views
230
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution