1.中国科学院 微电子研究所,北京 100029
2.中国科学院大学,北京 100049
扫 描 看 全 文
LI Ailin, LI Jing. Trajectory planning scheme for ultra-precision system. [J]. Optics and Precision Engineering 31(17):2534-2545(2023)
LI Ailin, LI Jing. Trajectory planning scheme for ultra-precision system. [J]. Optics and Precision Engineering 31(17):2534-2545(2023) DOI: 10.37188/OPE.20233117.2534.
为了提高超精密设备中多自由度工作台的效率和精度,在满足纳米精度要求的同时提高工程调试与集成效率,提出了一种针对多自由度工作台的轨迹规划方案。对前道工艺的应用场景和机电系统能力进行分析描述,聚焦轨迹规划的难点,提出了整定控制参数和确定轨迹动力学约束参数的方法。通过差分进化算法整定反馈控制器参数,再以控制器的实际跟踪效果和应用需求为优化目标,运用蒙特卡洛算法对参考轨迹进行优化迭代。最后与传统工程调试进行了实验对比。实验结果表明:在工作台扫描运动的重复定位精度均达到,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48088088&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=48088086&type=,13.97000027,2.79399991,要求的前提下,本文提出的方案能使跟踪误差快速收敛,调参次数减少约90%。该方案在保证超高运动定位精度的同时能够有效地提高工程调试与集成效率。
As equipment used for IC manufacturing must meet a wide range of complicated requirements, improving the efficiency and accuracy of multi-degree-of-freedom motion positioning systems, which are widely used in the design of various stages of IC manufacturing, has become a contentious research topic. Thus, this study proposes a critical trajectory-planning scheme for application in an ultra-precise and multi-motion stage. The goal of the trajectory planning is to control nanometer-level accuracy while improving technical efficiency in fine-tuning. The optimization trajectory model is based on the practical situation and the requirements of the real processes. A differential evolutionary approach is used to modify the controller setting, and a reference trajectory is derived using an iterative Monte Carlo approach based on the actual tracking performance of the controller as the optimization target. Simulations and experiments are performed using a physical system, and the data analysis demonstrates a fast convergence of the tracking errors, with approximately 90% reduction in the level of parameter fine-tuning while maintaining the repeat positioning precision of the stage below ±5 nm/3,σ,. The experimental results indicate that the proposed scheme can enhance the working efficiency of a motion system towards its required accuracy while maintaining a high level of positioning precision.
超精密系统轨迹规划蒙特卡洛算法跟踪控制多自由度耦合
ultra-precision systemtrajectory planningMonte Carlo algorithmservo controlmulti-degree-of-freedom coupling
IEEE. International Roadmap for Devices and Systems[EB/OL]. (2020) [2022-11-10]. https://irds.ieee.org/editions/2020https://irds.ieee.org/editions/2020.
吴剑威, 袁勇, 崔继文, 等. 双工件台宏微交接系统设计及实验[J]. 光学 精密工程, 2015, 23(6): 1673-1680. doi: 10.3788/ope.20152306.1673http://dx.doi.org/10.3788/ope.20152306.1673
WU J W, YUAN Y, CUI J W, et al. Design and test of macro-micro coupling system for dual-stage lithography[J]. Opt. Precision Eng., 2015, 23(6): 1673-1680.(in Chinese). doi: 10.3788/ope.20152306.1673http://dx.doi.org/10.3788/ope.20152306.1673
王磊杰, 郭子文, 叶伟楠, 等. 超精密空间分离式外差利特罗平面光栅编码器位移测量系统[J]. 光学 精密工程, 2022, 30(5): 499-509. doi: 10.37188/OPE.20223005.0499http://dx.doi.org/10.37188/OPE.20223005.0499
WANG L J, GUO Z W, YE W N, et al. Ultra-precision spatial-separated heterodyne Littrow grid encoder displacement measurement system[J]. Opt. Precision Eng., 2022, 30(5): 499-509.(in Chinese). doi: 10.37188/OPE.20223005.0499http://dx.doi.org/10.37188/OPE.20223005.0499
李龙辉, 张芷齐, 郭振, 等. 柔性扫描平台最优阶多项式速度曲线控制[J]. 光学 精密工程, 2021, 29(10): 2400-2411. doi: 10.37188/OPE.2021.0099http://dx.doi.org/10.37188/OPE.2021.0099
LI L H, ZHANG ZH Q, GUO ZH, et al. Optimal order polynomial motion profile for high-precision flexible scanning platform[J]. Opt. Precision Eng., 2021, 29(10): 2400-2411.(in Chinese). doi: 10.37188/OPE.2021.0099http://dx.doi.org/10.37188/OPE.2021.0099
DAI L Y, LI X, ZHU Y, et al. Auto-tuning of model-based feedforward controller by feedback control signal in ultraprecision motion systems[J]. Mechanical Systems and Signal Processing, 2020, 142: 106764. doi: 10.1016/j.ymssp.2020.106764http://dx.doi.org/10.1016/j.ymssp.2020.106764
HEERTJES M F, BUTLER H, DIRKX N J, et al. Control of wafer scanners: methods and developments[C]. 2020 American Control Conference (ACC).13,2020, Denver, CO, USA. IEEE, 2020: 3686-3703. doi: 10.23919/acc45564.2020.9147464http://dx.doi.org/10.23919/acc45564.2020.9147464
BUTLER H. Position control in lithographic equipment: an enabler for current-day chip manufacturing[J]. IEEE Control Systems, 2011, 13(3): 28-47.
BUTLER H. Adaptive feedforward for a wafer stage in a lithographic tool[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 875-881. doi: 10.1109/tcst.2012.2188102http://dx.doi.org/10.1109/tcst.2012.2188102
CARBONE G, GOMEZ-BRAVO F. Motion and Operation Planning of Robotic Systems: Background and Practical Approaches: 29 [M]. Softcover reprint of the original 1st ed. 2015 edition. Springer, 2016. doi: 10.1007/978-3-319-14705-5_18http://dx.doi.org/10.1007/978-3-319-14705-5_18
PIAZZI A, VISIOLI A. An interval algorithm for minimum-jerk trajectory planning of robot manipulators[C]. Proceedings of the 36th IEEE Conference on Decision and Control. 1212,1997, San Diego, CA, USA. IEEE, 2002: 1924-1927.
PIAZZI A, VISIOLI A. Global minimum-jerk trajectory planning of robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1): 140-149. doi: 10.1109/41.824136http://dx.doi.org/10.1109/41.824136
穆海华, 周云飞, 严思杰, 等. 超精密点对点运动三阶轨迹规划精度控制[J]. 机械工程学报, 2008, 44(1): 126-132. doi: 10.3321/j.issn:0577-6686.2008.01.022http://dx.doi.org/10.3321/j.issn:0577-6686.2008.01.022
MU H H, ZHOU Y F, YAN S J, et al. Precision control of third-order profile planning for high accuracy point-to-point motion system[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 126-132.(in Chinese). doi: 10.3321/j.issn:0577-6686.2008.01.022http://dx.doi.org/10.3321/j.issn:0577-6686.2008.01.022
蒋毅, 朱煜, 杨开明, 等. 超精密六自由度微动台耦合动力学建模及分析[J]. 中国电机工程学报, 2014, 34(30): 5451-5457. doi: 10.13334/j.0258-8013.pcsee.2014.30.024http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.30.024
JIANG Y, ZHU Y, YANG K M, et al. Coupled dynamic modeling and analysis of ultra-precision 6-DOF fine stage[J]. Proceedings of the CSEE, 2014, 34(30): 5451-5457.(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2014.30.024http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.30.024
RUGH W J, SHAMMA J S. Survey research on gain scheduling[J]. Automatica (Journal of IFAC), 2000, 36(10): 1401-1425. doi: 10.1016/s0005-1098(00)00058-3http://dx.doi.org/10.1016/s0005-1098(00)00058-3
ROOVER D D. Motion Control of a Wafer Stage : a Design Approach for Speeding up IC Production[D]. Netherland: Delft University Press, 1997.
SCHMIDT R M, SCHITTER G, EIJK J V. The design of High Performance Mechatronics[M]. Netherland: Delft University Press, 2014: 269-278.
刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721-729. doi: 10.3321/j.issn:1001-0920.2007.07.001http://dx.doi.org/10.3321/j.issn:1001-0920.2007.07.001
LIU B, WANG L, JIN Y H. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729.(in Chinese). doi: 10.3321/j.issn:1001-0920.2007.07.001http://dx.doi.org/10.3321/j.issn:1001-0920.2007.07.001
赵志伟, 杨景明, 呼子宇, 等. 基于角度邻域的多目标差分进化算法[J]. 控制理论与应用, 2017, 34(1): 22-32.
ZHAO ZH W, YANG J M, HU Z Y, et al. Multiobjective differential evolution algorithm based on angle neighbourhood[J]. Control Theory & Applications, 2017, 34(1): 22-32.(in Chinese)
AL-RAWASHDEH Y M, JANAIDEH MAL, HEERTJES M. On step-and-scan trajectories used in wafer scanners in semiconductor manufacturing[C]. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).271,2021, Prague, Czech Republic. IEEE, 2021: 7580-7586. doi: 10.1109/iros51168.2021.9636016http://dx.doi.org/10.1109/iros51168.2021.9636016
张洪财, 胡泽春, 宋永华, 等. 考虑时空分布的电动汽车充电负荷预测方法[J]. 电力系统自动化, 2014, 38(1): 13-20. doi: 10.7500/AEPS20130613009http://dx.doi.org/10.7500/AEPS20130613009
ZHANG H C, HU Z CH, SONG Y H, et al. A prediction method for electric vehicle charging load considering spatial and temporal distribution[J]. Automation of Electric Power Systems, 2014, 38(1): 13-20.(in Chinese). doi: 10.7500/AEPS20130613009http://dx.doi.org/10.7500/AEPS20130613009
0
Views
178
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution