1.重庆大学 光电技术及系统教育部重点实验室, 重庆 400044
2.重庆大学 光电工程学院测控技术与仪器专业, 重庆 400044
扫 描 看 全 文
LIU Yingxu, PU Chunyu, XU Diankun, et al. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification. [J]. Optics and Precision Engineering 31(17):2598-2610(2023)
LIU Yingxu, PU Chunyu, XU Diankun, et al. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification. [J]. Optics and Precision Engineering 31(17):2598-2610(2023) DOI: 10.37188/OPE.20233117.2598.
针对目标场景复杂的空间布局和高光谱影像固有的空-谱信息冗余等挑战,提出了端到端的轻量化深度全局-局部知识蒸馏(Lightweight Deep Global-Local Knowledge Distillation,LDGLKD)网络。为探索空-谱特征的全局序列属性,教师模型视觉Transformer(Vision Transformer,ViT)被用来指导轻量化学生模型进行高光谱影像场景分类。LDGLKD选择预训练的VGG16作为学生模型来提取局部细节信息,将ViT和VGG16通过知识蒸馏协同训练后,教师模型将所学习到的远程上下文关系向小规模学生模型进行传递。LDGLKD可通过知识蒸馏结合上述两种模型的优点,在欧比特高光谱影像场景分类数据集OHID-SC及公开的高光谱遥感图像数据集HSRS-SC上的最佳分类精度分别达到91.62%和97.96%。实验结果表明:LDGLKD网络具有良好的分类性能。根据欧比特珠海一号卫星提供的遥感数据构建的OHID-SC可以反映详细的地表覆盖情况,并为高光谱场景分类任务提供数据支撑。
To address the challenges of the complex spatial layouts of target scenes and inherent spatial-spectral information redundancy of HSIs, an end-to-end lightweight deep global–local knowledge distillation (LDGLKD) method is proposed herein. To explore the global sequence properties of spatial-spectral features, the vision transformer (ViT) is used as the teacher to guide the lightweight student model for HSI scene classification. In LDGLKD, pre-trained VGG16 is selected as the student model to extract local detail information. After collaborative training of ViT and VGG16 through knowledge distillation, the teacher model transmits the learned long-range contextual information to the small-scale student model. By combining the advantages of the two models through knowledge distillation, the optimal classification accuracy of LDGLKD on the Orbita HSI scene classification dataset (OHID-SC) and hyperspectral remote sensing dataset for scene classification (HSRS) reached 91.62% and 97.96%, respectively. The experimental results revealed that the proposed LDGLKD method presented good classification performance. In addition, the OHID-SC based on the remote sensing data obtained by the Orbita Zhuhai-1 satellite could reflect the detailed information of land cover and provide data support for HSI scene classification.
高光谱场景分类特征提取视觉Transformer知识蒸馏基准数据集
hyperspectral scene classificationfeature extractionvision transformerknowledge distillationbenchmark dataset
闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程, 2019, 27(3): 680-693. doi: 10.3788/ope.20192703.0680http://dx.doi.org/10.3788/ope.20192703.0680
YAN J W,CHEN H D,LIU L. Overview of hyperspectral image classification [J]. Opt. Precision Eng., 2019, 27(3): 680-693. (in Chinese). doi: 10.3788/ope.20192703.0680http://dx.doi.org/10.3788/ope.20192703.0680
丁国绅, 乔延利, 易维宁, 等. 基于高光谱图像的改进SIFT特征提取与匹配[J]. 光学 精密工程, 2020, 28(4): 954-962. doi: 10.3788/OPE.20202804.0954http://dx.doi.org/10.3788/OPE.20202804.0954
DING G S,QIAO Y L,YI W N,et al. Improved SIFT feature extraction and matching technology based on hyperspectral image [J]. Opt. Precision Eng., 2020, 28(4): 954-962. (in Chinese). doi: 10.3788/OPE.20202804.0954http://dx.doi.org/10.3788/OPE.20202804.0954
陈静, 张静. 改进高斯过程回归的高光谱空谱联合分类算法[J]. 光学 精密工程, 2019, 27(7): 1649-1660. doi: 10.3788/ope.20192707.1649http://dx.doi.org/10.3788/ope.20192707.1649
CHEN J, ZHANG J. Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression [J]. Opt. Precision Eng., 2019, 27(7): 1649-1660. (in Chinese). doi: 10.3788/ope.20192707.1649http://dx.doi.org/10.3788/ope.20192707.1649
CAI Y M, LIU X B, CAI Z H. BS-nets: an end-to-end framework for band selection of hyperspectral image [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1969-1984. doi: 10.1109/tgrs.2019.2951433http://dx.doi.org/10.1109/tgrs.2019.2951433
HU F, XIA G S, YANG W, et al. Mining deep semantic representations for scene classification of high-resolution remote sensing imagery [J]. IEEE Transactions on Big Data, 2020, 6(3): 522-536. doi: 10.1109/tbdata.2019.2916880http://dx.doi.org/10.1109/tbdata.2019.2916880
LUO F L, DU B, ZHANG L P, et al. Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image [J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2406-2419. doi: 10.1109/tcyb.2018.2810806http://dx.doi.org/10.1109/tcyb.2018.2810806
TONG X Y, XIA G S, LU Q, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models [J]. Remote Sensing of Environment, 2020, 237: 111322. doi: 10.1016/j.rse.2019.111322http://dx.doi.org/10.1016/j.rse.2019.111322
YU Y T, LI Y Y, WANG J, et al. C²-CapsViT: cross-context and cross-scale capsule vision transformers for remote sensing image scene classification [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. doi: 10.1109/lgrs.2022.3185454http://dx.doi.org/10.1109/lgrs.2022.3185454
ZOU Q, NI L H, ZHANG T, et al. Deep learning based feature selection for remote sensing scene classification [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2321-2325. doi: 10.1109/lgrs.2015.2475299http://dx.doi.org/10.1109/lgrs.2015.2475299
Bi Q, QIN K, LI Z L, et al. A multiple-instance densely-connected ConvNet for aerial scene classification [J]. IEEE Transactions on Image Processing, 2020, 9: 4911-4926. doi: 10.1109/tip.2020.2975718http://dx.doi.org/10.1109/tip.2020.2975718
CHENG G, CAI L M, LANG C B, et al. SPNet: Siamese-prototype network for few-shot remote sensing image scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. doi: 10.1109/tgrs.2021.3099033http://dx.doi.org/10.1109/tgrs.2021.3099033
LI E Z, XIA J S, Du P J, et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5653-5665. doi: 10.1109/tgrs.2017.2711275http://dx.doi.org/10.1109/tgrs.2017.2711275
CHAIB S, LIU H, GU Y F, et al. Deep feature fusion for VHR remote sensing scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4775-4784. doi: 10.1109/tgrs.2017.2700322http://dx.doi.org/10.1109/tgrs.2017.2700322
XU K J, HUANG H, DENG P F, et al. Two-stream feature aggregation deep neural network for scene classification of remote sensing images [J]. Information Sciences, 2020, 539: 250-268. doi: 10.1016/j.ins.2020.06.011http://dx.doi.org/10.1016/j.ins.2020.06.011
FANG J, YUAN Y, LU X Q, et al. Robust space–frequency joint representation for remote sensing image scene classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7492-7502. doi: 10.1109/tgrs.2019.2913816http://dx.doi.org/10.1109/tgrs.2019.2913816
HE X, CHEN Y S, LIN Z H. Spatial-spectral transformer for hyperspectral image classification [J]. Remote Sensing, 2021, 13(3): 498. doi: 10.3390/rs13030498http://dx.doi.org/10.3390/rs13030498
BAZI Y, BASHMAL L, AL RAHHAL M M , et al. Vision transformers for remote sensing image classification [J]. Remote Sensing, 2021, 13(3): 516. doi: 10.3390/rs13030516http://dx.doi.org/10.3390/rs13030516
ZHANG J R, ZHAO H W, LI J. TRS: Transformers for remote sensing scene classification [J]. Remote Sensing, 2021, 13(20): 4143. doi: 10.3390/rs13204143http://dx.doi.org/10.3390/rs13204143
SHI C, FANG L, LV Z Y, et al. Explainable scale distillation for hyperspectral image classification [J]. Pattern Recognition, 2022, 122: 108316. doi: 10.1016/j.patcog.2021.108316http://dx.doi.org/10.1016/j.patcog.2021.108316
HU Y T, HUANG X, LUO X Y, et al. Variational Self-Distillation for Remote Sensing Scene Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. doi: 10.1109/tgrs.2022.3194549http://dx.doi.org/10.1109/tgrs.2022.3194549
刘康, 周壮, 李盛阳, 等. 天宫一号高光谱遥感场景分类数据集及应用[J]. 遥感学报, 2020, 24(9): 1077-1087. doi: 10.11834/jrs.20209323http://dx.doi.org/10.11834/jrs.20209323
LIU K, ZHOU Z, LI S Y, et al. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications [J]. Journal of Remote Sensing, 2020, 24(9): 1077-1087. (in Chinese). doi: 10.11834/jrs.20209323http://dx.doi.org/10.11834/jrs.20209323
徐科杰,邓培芳,黄鸿.HSRS-SC:面向遥感场景分类的高光谱图像数据集[J]. 中国图象图形学报,2021,26(8):1809-1822. doi: 10.11834/jig.200835http://dx.doi.org/10.11834/jig.200835
XU K J, DENG P F, HUANG H. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification [J]. Journal of Image and Graphics, 2021, 26(8): 1809-1822. (in Chinese). doi: 10.11834/jig.200835http://dx.doi.org/10.11834/jig.200835
WANG Q, HUANG W, XIONG Z T, et al. Looking closer at the scene: multiscale representation learning for remote sensing image scene classification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1414-1428. doi: 10.1109/tnnls.2020.3042276http://dx.doi.org/10.1109/tnnls.2020.3042276
WANG Q, LIU S T, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155-1167. doi: 10.1109/tgrs.2018.2864987http://dx.doi.org/10.1109/tgrs.2018.2864987
0
Views
18
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution