1.江西理工大学 电气工程及其自动化学院,江西 赣州 341000
扫 描 看 全 文
LIANG Liming, HE Anjun, LI Renjie, et al. Cross-scale and cross-dimensional adaptive transformer network for colorectal polyp segmentation. [J]. Optics and Precision Engineering 31(18):2700-2712(2023)
LIANG Liming, HE Anjun, LI Renjie, et al. Cross-scale and cross-dimensional adaptive transformer network for colorectal polyp segmentation. [J]. Optics and Precision Engineering 31(18):2700-2712(2023) DOI: 10.37188/OPE.20233118.2700.
针对结直肠息肉图像病灶区域尺度变化大、边界模糊、形状不规则且与正常组织对比度低等问题,导致边缘细节信息丢失和病灶区域误分割,提出一种跨尺度跨维度的自适应Transformer分割网络。该网络一是利用Transformer编码器建模输入图像的全局上下文信息,多尺度分析结直肠息肉病灶区域。二是通过通道注意力桥和空间注意力桥减少通道维度冗余和增强模型空间感知能力,抑制背景噪声。三是采用多尺度密集并行解码模块来填补各层跨尺度特征信息之间的语义空白,有效聚合多尺度上下文特征。四是设计面向边缘细节的多尺度预测模块,以可学习的方式引导网络去纠正边界错误预测分类。在CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB和ETIS数据集上进行实验,其Dice相似性系数分别为0.942,0.932,0.811和0.805,平均交并比分别为0.896,0.883,0.731和0.729,其分割性能优于现有方法。仿真实验表明,本文方法能有效改善结直肠息肉病灶区域误分割,具有较高的分割精度,为结直肠息肉诊断提供新窗口。
To address the problem of large-scale variation, blurred boundaries, irregular shapes, and low contrast with normal tissues in colon polyp images, which leads to the loss of edge detail information and mis-segmentation of lesion areas, we propose a cross-dimensional and cross-scale adaptive transformer segmentation network. First, the network uses transformer encoders to model the global contextual information of the input image and analyze the colon polyp lesion areas at multiple scales. Second, the channel attention and spatial attention bridges are used to reduce channel dimension redundancy and enhance the model's spatial perception ability while suppressing background noise. Third, the multi-scale dense parallel decoding module is used to bridge the semantic gaps between cross-scale feature information at different layers, effectively aggregating multi-scale contextual features. Fourth, a multi-scale prediction module is designed for edge details, guiding the network to correct boundary errors in a learnable manner. The experimental results conducted on the CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and ETIS datasets showed that the Dice similarity coefficients are 0.942, 0.932, 0.811, and 0.805, and the average intersection-over-union ratios are 0.896, 0.883, 0.731, and 0.729, respectively. The segmentation performance of our proposed method was better than that of existing methods. The simulation experiment showed that our method can effectively improve the mis-segmentation of colon polyp lesion areas and achieve high segmentation accuracy, providing a new approach for colon polyp diagnosis.
结直肠息肉Transformer多尺度密集并行解码模块多尺度预测模块
colcorectal polypstransformermulti-scale dense parallel decoding modulemulti-scale prediction module
LI W, ZHAO Y, LI F, et al. MIA-Net: multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation[J]. Knowledge-Based Systems, 2022, 247: 108824. doi: 10.1016/j.knosys.2022.108824http://dx.doi.org/10.1016/j.knosys.2022.108824
徐昌佳, 易见兵, 曹锋, 等. 采用DoubleUNet网络的结直肠息肉分割算法[J]. 光学 精密工程, 2022, 30(8): 970-983. doi: 10.37188/ope.20223008.0970http://dx.doi.org/10.37188/ope.20223008.0970
XU C J, YI J B, CAO F, et al. Colorectal polyp segmentation algorithm using DoubleUNet network[J]. Opt. Precision Eng., 2022, 30(8): 970-983. (in Chinese). doi: 10.37188/ope.20223008.0970http://dx.doi.org/10.37188/ope.20223008.0970
梁礼明, 周珑颂, 冯骏, 等. 基于高分辨率复合网络的皮肤病变分割[J]. 光学 精密工程, 2022, 30(16)2021-2038. doi: 10.37188/OPE.20223016.2021http://dx.doi.org/10.37188/OPE.20223016.2021
LIANG L M, ZHOU L S, FENG J, et al. Skin lesion segmentation based on high-resolution composite network[J]. Opt. Precision Eng., 2022, 30(16)2021-2038(in Chinese). doi: 10.37188/OPE.20223016.2021http://dx.doi.org/10.37188/OPE.20223016.2021
LIANG H, CHENG Z, ZHONG H, et al. A region-based convolutional network for nuclei detection and segmentation in microscopy images[J]. Biomedical Signal Processing and Control, 2022, 71: 103276. doi: 10.1016/j.bspc.2021.103276http://dx.doi.org/10.1016/j.bspc.2021.103276
SHAO D G, XU C R, XIANG Y, et al. Ultrasound image segmentation with multilevel threshold based on differential search algorithm[J]. IET Image Processing, 2019, 13(6): 998-1005. doi: 10.1049/iet-ipr.2018.6150http://dx.doi.org/10.1049/iet-ipr.2018.6150
周明全, 杨稳, 林芃樾, 等. 基于最小二乘正则相关性分析的颅骨身份识别[J]. 光学 精密工程, 2021, 29(01):201-210. doi: 10.37188/OPE.20212901.0201http://dx.doi.org/10.37188/OPE.20212901.0201
ZHOU M Q, YANG W, LIN P Y, et al. Skull identification based on least square canonical correlation analysis[J]. Opt. Precision Eng., 2021, 29(1): 201-210. (in Chinese). doi: 10.37188/OPE.20212901.0201http://dx.doi.org/10.37188/OPE.20212901.0201
梁礼明, 刘博文, 杨海龙, 等. 基于多特征融合的有监督视网膜血管提取[J]. 计算机学报, 2018, 41(11):2566-2580. doi: 10.11897/SP.J.1016.2018.02566http://dx.doi.org/10.11897/SP.J.1016.2018.02566
LIANG L M, LIU B W, YANG H L, et al. Supervised blood vessel extraction in retinal images based on multiple feature fusion[J]. Chinese Journal of Computers, 2018, 41(11): 2566-2580.(in Chinese). doi: 10.11897/SP.J.1016.2018.02566http://dx.doi.org/10.11897/SP.J.1016.2018.02566
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28http://dx.doi.org/10.1007/978-3-319-24574-4_28
JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet: an advanced architecture for medical image segmentation[C]. 2019 IEEE International Symposium on Multimedia (ISM).9-11, 2019, San Diego, CA, USA. IEEE, 2020: 225-2255. doi: 10.1109/ism46123.2019.00049http://dx.doi.org/10.1109/ism46123.2019.00049
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. doi: 10.1109/cvpr.2018.00745http://dx.doi.org/10.1109/cvpr.2018.00745
FAN D, JI G, ZHOU T, et al. PraNet: Parallel Reverse Attention Network for Polyp Segmentation[EB/OL]. 2020: arXiv: 2006.11392. https://arxiv.org/abs/2006.11392.pdfhttps://arxiv.org/abs/2006.11392.pdf. doi: 10.1007/978-3-030-59725-2_26http://dx.doi.org/10.1007/978-3-030-59725-2_26
LOU A G, GUAN S Y, KO H, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[C]. SPIE Medical Imaging. Proc SPIE 12032, Medical Imaging 2022: Image Processing, San Diego, California, USA. 2022, 12032: 81-92. doi: 10.1117/12.2611802http://dx.doi.org/10.1117/12.2611802
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[EB/OL]. 2017: arXiv: 1706.03762. https://arxiv.org/abs/1706.03762.pdfhttps://arxiv.org/abs/1706.03762.pdf
DAI Y, GAO Y F, LIU F Y. TransMed: transformers advance multi-modal medical image classification[J]. Diagnostics (Basel, Switzerland), 2021, 11(8): 1384. doi: 10.3390/diagnostics11081384http://dx.doi.org/10.3390/diagnostics11081384
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[EB/OL]. 2021: arXiv: 2102.04306. https://arxiv.org/abs/2102.04306.pdfhttps://arxiv.org/abs/2102.04306.pdf
WANG J F, HUANG Q M, TANG F L, et al. Stepwise Feature Fusion: Local Guides Global[M]. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 110-120. doi: 10.1007/978-3-031-16437-8_11http://dx.doi.org/10.1007/978-3-031-16437-8_11
WU C, LONG C, LI S, et al. MSRAformer: Multiscale spatial reverse attention network for polyp segmentation[J]. Computers in Biology and Medicine, 2022, 151: 106274. doi: 10.1016/j.compbiomed.2022.106274http://dx.doi.org/10.1016/j.compbiomed.2022.106274
WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. doi: 10.1007/s41095-022-0274-8http://dx.doi.org/10.1007/s41095-022-0274-8
ISLAM M A, JIA S, BRUCE N D B. How Much Position Information Do Convolutional Neural Networks Encode?[EB/OL]. 2020: arXiv: 2001.08248. https://arxiv.org/abs/2001.08248.pdfhttps://arxiv.org/abs/2001.08248.pdf
RUAN J C, XIANG S C, XIE M Y, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[C]. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).6-8, 2022, Las Vegas, NV, USA. IEEE, 2023: 1150-1156. doi: 10.1109/bibm55620.2022.9995040http://dx.doi.org/10.1109/bibm55620.2022.9995040
DONG B, WANG W, FAN D, et al. Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers[EB/OL]. 2021: arXiv: 2108.06932. https://arxiv.org/abs/2108.06932https://arxiv.org/abs/2108.06932
刘媛媛, 周小康, 王跃勇, 等. 改进U-Net模型的保护性耕作田间秸秆覆盖检测[J]. 光学 精密工程, 2022, 30(9): 1101-1112. doi: 10.37188/OPE.20223009.1101http://dx.doi.org/10.37188/OPE.20223009.1101
LIU Y Y, ZHOU X K, WANG Y Y, et al. Straw coverage detection of conservation tillage farmland based on improved U-Net model[J]. Opt. Precision Eng., 2022, 30(9): 1101-1112. (in Chinese). doi: 10.37188/OPE.20223009.1101http://dx.doi.org/10.37188/OPE.20223009.1101
ZHANG W, FU C, ZHENG Y, et al. HSNet: a hybrid semantic network for polyp segmentation[J]. Computers in Biology and Medicine, 2022, 150: 106173. doi: 10.1016/j.compbiomed.2022.106173http://dx.doi.org/10.1016/j.compbiomed.2022.106173
BERNAL J, SÁNCHEZ FJ, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111. doi: 10.1016/j.compmedimag.2015.02.007http://dx.doi.org/10.1016/j.compmedimag.2015.02.007
JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a Segmented Polyp Dataset[M]. MultiMedia Modeling. Cham: Springer International Publishing, 2019: 451-462. doi: 10.1007/978-3-030-37734-2_37http://dx.doi.org/10.1007/978-3-030-37734-2_37
TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 630-644. doi: 10.1109/tmi.2015.2487997http://dx.doi.org/10.1109/tmi.2015.2487997
SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 283-293. doi: 10.1007/s11548-013-0926-3http://dx.doi.org/10.1007/s11548-013-0926-3
PATEL K, BUR A M, WANG G H. Enhanced U-Net: a feature enhancement network for polyp segmentation[C]. 2021 18th Conference on Robots and Vision (CRV).26-28, 2021, Burnaby, BC, Canada. IEEE, 2021: 181-188. doi: 10.1109/crv52889.2021.00032http://dx.doi.org/10.1109/crv52889.2021.00032
0
Views
19
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution