1.中国空气动力研究与发展中心 设备设计与测试技术研究所,四川 绵阳 621000
2.中国空气动力研究与发展中心 空气动力学国家重点实验室,四川 绵阳 621000
扫 描 看 全 文
CHEN Li, YIN Yimin, LI Yudong, et al. Velocity measurements in supersonic mixing layer using femtosecond laser electronic excitation tagging. [J]. Optics and Precision Engineering 31(19):2781-2788(2023)
CHEN Li, YIN Yimin, LI Yudong, et al. Velocity measurements in supersonic mixing layer using femtosecond laser electronic excitation tagging. [J]. Optics and Precision Engineering 31(19):2781-2788(2023) DOI: 10.37188/OPE.20233119.2781.
为了测量复杂流动速度分布,基于分子标记示踪原理建立了飞秒激光电子激发标记(FLEET)测量装置。开展了超声速混合流动速度分布测量实验,获得了马赫数3.0射流分别与马赫数2.0,2.5及2.9射流形成的混合流动速度分布的测量结果;结合大涡模拟和纹影实验,显示了混合层的流场结构。利用延迟10 μs的荧光标记线与荧光基线的位移差,分析得出实验中FLEET速度测量的不确定度优于5 m/s;在高低速主流区,FLEET测量的速度结果与计算结果基本一致;在混合层,FLEET实现了较大梯度的速度分布测量,混合层的厚度与纹影实验结果符合较好。实验表明,建设的FLEET装置具有较强的工程实验能力,能够实现超声速混合层等复杂流动速度的分布测量。
To measure the velocity distribution of a complex flow, a femtosecond laser electronic excitation tagging (FLEET) system was established based on the principle of molecular tagging velocimetry. The velocity distribution of a supersonic mixing layer flow, which was generated from a primary stream of Mach number 3.0 and secondary streams of Mach numbers 2, 2.5, and 2.9, were obtained. In addition, the flow structure of the mixing layer was obtained through large-eddy simulation and a schlieren experiment. The uncertainty of FLEET velocity measurement is better than 5 m/s by calculating the displacement difference between the fluorescence baseline and the 10-μs-delay fluorescence filament. In the main stream, the velocity results measured by FLEET were essentially consistent with the calculation results. In the mixing layer, the obvious gradient velocity distribution was obtained, and the thickness of the mixed layer was essentially consistent with the schlieren experimental result. Therefore, the FLEET system can be used for complex velocity distribution measurements, such as supersonic mixing layer flow.
飞秒激光分子示踪速度测量超声速混合层
femtosecond lasermolecular taggingvelocity measurementsupersonic mixing layer
庞冬晫. 高超声速再入弹头驻点热流密度优化[D]. 哈尔滨: 哈尔滨工程大学, 2009. doi: 10.7666/d.y1655071http://dx.doi.org/10.7666/d.y1655071
PANG D Z. Optimization of Stagnation Heat Flux of Hypersonic Reentry Warhead[D]. Harbin: Harbin Engineering University, 2009. (in Chinese). doi: 10.7666/d.y1655071http://dx.doi.org/10.7666/d.y1655071
范吉川, 樊玉辰, 张晋平, 等. 世界风洞[M]. 北京:航空工业出版社,1992.
FAN J CH, FAN Y CH, ZHANG J P, et al. The Wind Tunnel[M]. Beijing: Navigate Industrial Press, 1992. (in Chinese)
杨文斌, 陈力, 闫博, 等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量[J]. 实验流体力学, 2022, 36(4): 94-102. doi: 10.11729/syltlx20210060http://dx.doi.org/10.11729/syltlx20210060
YANG W B, CHEN L, YAN B, et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94-102. (in Chinese). doi: 10.11729/syltlx20210060http://dx.doi.org/10.11729/syltlx20210060
杜钰锋, 林俊, 王勋年, 等. 变热线过热比可压缩流湍流度测量方法优化[J]. 航空学报, 2019, 40(12): 50-58. doi: 10.7527/S1000-6893.2019.23067http://dx.doi.org/10.7527/S1000-6893.2019.23067
DU Y F, LIN J, WANG X N, et al. Measurement technique optimization of turbulence level in compressible fluid by changing overheat ratio of hot wire anemometer[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 50-58.(in Chinese). doi: 10.7527/S1000-6893.2019.23067http://dx.doi.org/10.7527/S1000-6893.2019.23067
DAMMATI S S, KOZAK Y, RISING C, et al. Numerical investigation of the accuracy of particle image velocimetry technique in gas-phase detonations[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3671-3681. doi: 10.1016/j.proci.2020.07.102http://dx.doi.org/10.1016/j.proci.2020.07.102
OJO A O, FOND B, VAN WACHEM B G M, et al. Thermographic laser Doppler velocimetry[J]. Optics Letters, 2015, 40(20): 4759. doi: 10.1364/ol.40.004759http://dx.doi.org/10.1364/ol.40.004759
KUHLMAN J, BURTON L, SCARBERRY T. Doppler global velocimetry data in circular jets[J]. Measurement Science and Technology, 2002, 13(7): 1154-1162. doi: 10.1088/0957-0233/13/7/325http://dx.doi.org/10.1088/0957-0233/13/7/325
叶景峰, 胡志云, 刘晶儒, 等. 分子标记速度测量技术及应用研究进展[J]. 实验流体力学, 2015, 29(3): 11-1761, 61. doi: 10.11729/syltlx20140079http://dx.doi.org/10.11729/syltlx20140079
YE J F, HU ZH Y, LIU J R, et al. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 11-1761, 61.(in Chinese). doi: 10.11729/syltlx20140079http://dx.doi.org/10.11729/syltlx20140079
LI F B, ZHANG H B, BAI B F. A review of molecular tagging measurement technique[J]. Measurement, 2021, 171: 108790. doi: 10.1016/j.measurement.2020.108790http://dx.doi.org/10.1016/j.measurement.2020.108790
MICHAEL J B, EDWARDS M R, DOGARIU A, et al. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J]. Applied Optics, 2011, 50(26): 5158. doi: 10.1364/ao.50.005158http://dx.doi.org/10.1364/ao.50.005158
EDWARDS M R, DOGARIU A, MILES R B. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging[J]. AIAA Journal, 2015, 53(8): 2280-2288. doi: 10.2514/1.j053685http://dx.doi.org/10.2514/1.j053685
ZHANG Y B, SHNEIDER M N, MILES R B. Femtosecond laser excitation in argon-nitrogen mixtures[J]. AIAA Journal, 2018, 56(3): 1060-1071. doi: 10.2514/1.j056084http://dx.doi.org/10.2514/1.j056084
DOGARIU L E, DOGARIU A, MILES R B, et al. Femtosecond laser electronic excitation tagging velocimetry in a large-scale hypersonic facility[J]. AIAA Journal, 2019, 57(11): 4725-4737. doi: 10.2514/1.j057759http://dx.doi.org/10.2514/1.j057759
DOGARIU A, DOGARIU L E, SMITH M S, et al. Velocity and temperature measurements in Mach 18 nitrogen flow at tunnel 9[C]. AIAA Scitech 2021 Forum. VIRTUAL EVENT. Reston, Virginia: AIAA, 2021: AIAA2021-0020. doi: 10.2514/6.2021-0020http://dx.doi.org/10.2514/6.2021-0020
JIANG N B, HALLS B R, STAUFFER H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry[J]. Optics Letters, 2016, 41(10): 2225-2228. doi: 10.1364/ol.41.002225http://dx.doi.org/10.1364/ol.41.002225
BURNS R A, DANEHY P M. Unseeded velocity measurements around a transonic airfoil using femtosecond laser tagging[J]. AIAA Journal, 2017, 55(12): 4142-4154. doi: 10.2514/1.j056154http://dx.doi.org/10.2514/1.j056154
GOPAL V, PALMQUIST D, MADDALENA L, et al. FLEET velocimetry measurements in the ONR-UTA arc-jet wind tunnel[J].Experiments in Fluids, 2021, 62(10): 1-17. doi: 10.1007/s00348-021-03306-4http://dx.doi.org/10.1007/s00348-021-03306-4
FISHER J M, SMYSER M E, SLIPCHENKO M N, et al. Burst-mode femtosecond laser electronic excitation tagging for kHz-MHz seedless velocimetry[J]. Optics Letters, 2020, 45(2): 335. doi: 10.1364/ol.380109http://dx.doi.org/10.1364/ol.380109
FISHER J M, CHYNOWETH B C, SMYSER M E, et al. Femtosecond laser electronic excitation tagging velocimetry in a Mach six quiet tunnel[J]. AIAA Journal, 2021, 59(2): 768-772. doi: 10.2514/1.j059879http://dx.doi.org/10.2514/1.j059879
ZHANG Y B, MARSHALL G, BERESH S J, et al. Multi-line FLEET by imaging periodic masks[J]. Optics Letters, 2020, 45(14): 3949-3952. doi: 10.1364/ol.392779http://dx.doi.org/10.1364/ol.392779
ZHANG Y B, RICHARDSON D, MARSHALL G, et al. Dotted-line FLEET for two-component velocimetry[J]. Optics Letters, 2022, 47(1): 98-101. doi: 10.1364/ol.443750http://dx.doi.org/10.1364/ol.443750
WANG J X, CHEN S, CHEN L, et al. Measurement of FLEET influence on ambient air temperature by Rayleigh scattering[J]. Optics and laser technology, 2022, 145: 107456. doi: 10.1016/j.optlastec.2021.107456http://dx.doi.org/10.1016/j.optlastec.2021.107456
YANG W B, ZHOU J N, CHEN L, et al. Temporal characterization of heating in femtosecond laser filamentation with planar Rayleigh scattering[J]. Optics Express, 2021, 29(10): 14883-14893. doi: 10.1364/oe.418654http://dx.doi.org/10.1364/oe.418654
朱志峰, 李博, 高强, 等. 飞秒激光电子激发标记测速方法及其在超声速射流中的试验验证[J]. 空气动力学学报, 2020, 38(5):880-886, I0001. doi: 10.7638/kqdlxxb-2018.0150http://dx.doi.org/10.7638/kqdlxxb-2018.0150
ZHU ZH F, LI B, GAO Q, et al. Femtosecond laser electronic excitation tagging for velocity measurement in supersonic jet[J]. Acta Aerodynamica Sinica, 2020, 38(5):880-886, I0001.(in Chinese). doi: 10.7638/kqdlxxb-2018.0150http://dx.doi.org/10.7638/kqdlxxb-2018.0150
LI B, ZHANG D Y, LIU J X, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics[J]. Applied Sciences, 2019, 9(9): 1906. doi: 10.3390/app9091906http://dx.doi.org/10.3390/app9091906
赵玉新, 易仕和, 田立丰, 等. 超声速混合层拟序结构密度脉动的多分辨率分析[J]. 中国科学E辑, 2010, 40(6): 695-703.
ZHAO Y X, YI SH H, TIAN L F, et al. Multi-resolution analysis of density fluctuation of coherent structure in supersonic mixing layer[J]. Scientia Sinica (Technologica), 2010, 40(6): 695-703.(in Chinese)
GRIB S W, JIANG N B, HSU P S, et al. Femtosecond laser electronic excitation tagging velocimetry in a Mach 6 ludwieg tube[J]. AIAA Journal, 2022, 60(6): 3464-3471. doi: 10.2514/1.j060942http://dx.doi.org/10.2514/1.j060942
0
Views
9
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution