1.中国工程物理研究院 总体工程研究所,四川 绵阳 621999
扫 描 看 全 文
ZHANG Jun, HUANG Hanjun, MAO Yongjian, et al. Schlieren diagnosis and characteristic analysis of outlet flow field for blasting shock tube. [J]. Optics and Precision Engineering 31(19):2789-2798(2023)
ZHANG Jun, HUANG Hanjun, MAO Yongjian, et al. Schlieren diagnosis and characteristic analysis of outlet flow field for blasting shock tube. [J]. Optics and Precision Engineering 31(19):2789-2798(2023) DOI: 10.37188/OPE.20233119.2789.
冲击波是爆炸毁伤的主要载荷形式之一,炸药驱动激波管是较真实复现高超压冲击波场景的可能方式,当前亟需关注冲击波与产物分离状态、波阵面形态等实验参数测试问题,仅依靠传统电测原理的单一点源压力测量无法满足上述流场表征需要。基于反射式纹影原理并利用激光光源和系列光学元件,搭建了一套激波管出口流场诊断系统,将流动现象的可视化观测结果与传统压力测量相结合,完善流场特征诊断与分析方法。研究表明,该纹影系统能够清晰获得激波管出口的冲击波和产物运动流场图像,通过与压力测试与激波管点火时序的同步控制,可有效揭示压电式冲击波压力传感器数据振荡、压力突变、漂移等特征,以及爆炸后管道中应力波引起的管口及空气振动等现象。基于图像分析可分析获得炸药爆炸激波管出口冲击波运动速度和压力的空间衰减特性,该结果为更好理解炸药驱动激波管冲击波压力的形成和演化规律研究提供了诊断途径和分析基础。
Shock waves represent a primary form of damage from explosions, and explosive-driven shock tubes can simulate high overpressure shock wave scenarios. It is essential to determine test parameters, including the separation among the shock wave, explosion products, wave-front shape. Traditional pressure measurements, grounded in electrical principles, are insufficient for current flow field characterization research. Leveraging the reflection schlieren principle, a diagnostic system is developed for the shock tube nozzle's flow field. This system utilizes a laser source and sequence of optical elements. By integrating visual observations of flow phenomena with conventional pressure data, the method for analyzing flow field characteristics is enhanced. The findings indicate that the schlieren system captures high-resolution images of the shock wave and product flow field at the exit of the shock tube. Synchronized schlieren images, aligned with the pressure tests of the shock tube and ignition timings, offer insights into data oscillation, pressure anomalies, and the drift observed in piezoelectric pressure sensors. They also highlight the vibration effects in the nozzle and surrounding air, resulting from stress waves post-explosion within the tube. Through image analysis, the spatial decay patterns of the velocity and pressure of the shock wave at the explosive outlet of the shock tube can be obtained. These results furnish a novel diagnostic technique and analytical foundation, enhancing our comprehension of the formation and evolution of shock wave pressure in the explosive-driven shock tube.
光学测量激波管爆炸流场纹影法冲击波
optical measurementshock tubeexplosion flow fieldschlieren methodshock wave
卢芳云, 蒋邦海, 李翔宇. 武器战斗部投射与毁伤[M]. 北京: 科学出版社, 2013.
LU F Y, JIANG B H, LI X Y. Projection and Damage of Weapon Warhead[M]. Beijing: Science Press, 2013.(in Chinese)
王振宇, 任辉启. 国外大型爆炸波模拟装置设计研究综述[J]. 防护工程, 2009, 31(6): 72-79.
WANG ZH Y, REN H Q. Review on design and research of large-scale explosion wave simulator abroad[J]. Protective Engineering, 2009, 31(6): 72-79.(in Chinese)
郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性[J]. 爆炸与冲击, 2021, 41(10): 78-89. doi: 10.11883/bzycj-2020-0316http://dx.doi.org/10.11883/bzycj-2020-0316
ZHENG J, LU F Y, CHEN R. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition[J]. Explosion and Shock Waves, 2021, 41(10): 78-89.(in Chinese). doi: 10.11883/bzycj-2020-0316http://dx.doi.org/10.11883/bzycj-2020-0316
张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算[J]. 装备环境工程, 2021, 18(5): 21-27. doi: 10.7643/issn.1672-9242.2021.05.004http://dx.doi.org/10.7643/issn.1672-9242.2021.05.004
ZHANG J, HUANG H J, WANG J P, et al. Load calculation of explosive-driven explosive tube[J]. Equipment Environmental Engineering, 2021, 18(5): 21-27.(in Chinese). doi: 10.7643/issn.1672-9242.2021.05.004http://dx.doi.org/10.7643/issn.1672-9242.2021.05.004
姬建荣, 苏健军, 孔德仁, 等. 爆炸冲击波参数薄膜测试法研究[J]. 中国测试, 2016, 42(10): 21-24, 62. doi: 10.11857/j.issn.1674-5124.2016.10.004http://dx.doi.org/10.11857/j.issn.1674-5124.2016.10.004
JI J R, SU J J, KONG D R, et al. The study on membrane method for parameter measurement of explosion shock wave[J]. China Measurement & Test, 2016, 42(10): 21-24, 62.(in Chinese). doi: 10.11857/j.issn.1674-5124.2016.10.004http://dx.doi.org/10.11857/j.issn.1674-5124.2016.10.004
柴栋梁, 王文廉. 柔性传感冲击波瞬态压力测试方法[J]. 中国测试, 2018, 44(12): 91-95. doi: 10.11857/j.issn.1674-5124.2018.12.016http://dx.doi.org/10.11857/j.issn.1674-5124.2018.12.016
CHAI D L, WANG W L. Test method of transient pressure of flexible sensing shock wave[J]. China Measurement & Test, 2018, 44(12): 91-95.(in Chinese). doi: 10.11857/j.issn.1674-5124.2018.12.016http://dx.doi.org/10.11857/j.issn.1674-5124.2018.12.016
孔霖, 苏健军, 李芝绒, 等. 某压力传感器热冲击响应的抑制方法[J]. 传感器与微系统, 2010, 29(12): 69-72. doi: 10.3969/j.issn.1000-9787.2010.12.022http://dx.doi.org/10.3969/j.issn.1000-9787.2010.12.022
KONG L, SU J J, LI ZH R, et al. A way to restrain the response of thermal impact of a pressure sensor[J]. Transducer and Microsystem Technologies, 2010, 29(12): 69-72.(in Chinese). doi: 10.3969/j.issn.1000-9787.2010.12.022http://dx.doi.org/10.3969/j.issn.1000-9787.2010.12.022
CLOUGH L G, CLUBLEY S K. Steel column response to thermal and long duration blast loads inside an air blast tunnel[J]. Structure and Infrastructure Engineering, 2019, 15(11): 1510-1528. doi: 10.1080/15732479.2019.1635627http://dx.doi.org/10.1080/15732479.2019.1635627
王海锋, 禄晓飞, 涂国勇, 等. 冲击波超压测量数据处理方法研究[J]. 现代防御技术, 2020, 48(2): 69-73, 95.
WANG H F, LU X F, TU G Y, et al. Research on data processing method of shock wave overpressure measurement[J]. Modern Defence Technology, 2020, 48(2): 69-73, 95.(in Chinese)
张衍芳. 冲击波信号处理方法的研究[D]. 太原: 中北大学, 2011.
ZHANG Y F. Research on Shock Wave Signal Processing Method[D]. Taiyuan: North University of China, 2011. (in Chinese)
朱海军, 王倩, 梅笑寒, 等. 基于高速纹影/阴影成像的流场测速技术研究进展[J]. 实验流体力学, 2022, 36(2): 49-73. doi: 10.11729/syltlx20210110http://dx.doi.org/10.11729/syltlx20210110
ZHU H J, WANG Q, MEI X H, et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73.(in Chinese). doi: 10.11729/syltlx20210110http://dx.doi.org/10.11729/syltlx20210110
LAURENCE S J, WAGNER A, HANNEMANN K. Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization[J]. Journal of Fluid Mechanics, 2016, 797: 471-503. doi: 10.1017/jfm.2016.280http://dx.doi.org/10.1017/jfm.2016.280
吴军, 宋丰成, 潘智祥, 等. 采用干涉条纹纹影法的轴对称温度场测量[J]. 光学 精密工程, 2023, 31(2): 150-159. doi: 10.37188/OPE.20233102.0150http://dx.doi.org/10.37188/OPE.20233102.0150
WU J, SONG F CH, PAN ZH X, et al. Axisymmetric temperature field measurement using interference fringe schlieren method[J]. Opt. Precision Eng., 2023, 31(2): 150-159.(in Chinese). doi: 10.37188/OPE.20233102.0150http://dx.doi.org/10.37188/OPE.20233102.0150
张雄星, 王伟, 刘光海, 等. 温度场纹影定量测量技术[J]. 中国光学, 2018, 11(5): 860-873. doi: 10.3788/co.20181105.0860http://dx.doi.org/10.3788/co.20181105.0860
ZHANG X X, WANG W, LIU G H, et al. Quantative measuring technique for the temperature of flow fields in schlieren systems[J]. Chinese Optics, 2018, 11(5): 860-873.(in Chinese). doi: 10.3788/co.20181105.0860http://dx.doi.org/10.3788/co.20181105.0860
李斌, 王雨, 周志强, 等. 爆炸冲击波威力高速纹影测量方法[J]. 光学与光电技术, 2018, 16(2): 43-49.
LI B, WANG Y, ZHOU ZH Q, et al. High-speed schlieren photography for measuring the explosive blast wave power[J]. Optics & Optoelectronic Technology, 2018, 16(2): 43-49.(in Chinese)
郑星, 黄海莹, 毛勇建, 等. 基于高速纹影技术的爆炸冲击波图像测量研究[J]. 光学 精密工程, 2022, 30(18): 2187-2194. doi: 10.37188/OPE.20223018.2187http://dx.doi.org/10.37188/OPE.20223018.2187
ZHENG X, HUANG H Y, MAO Y J, et al. Research on image measurement of explosion shock wave based on high-speed schlieren technology[J]. Opt. Precision Eng., 2022, 30(18): 2187-2194.(in Chinese). doi: 10.37188/OPE.20223018.2187http://dx.doi.org/10.37188/OPE.20223018.2187
胡洋, 尹尚先, BJORN A J, 等. 矿井瓦斯/空气预混气体爆燃的激光纹影测试系统设计[J]. 光学 精密工程, 2019, 27(5): 1045-1051. doi: 10.3788/ope.20192705.1045http://dx.doi.org/10.3788/ope.20192705.1045
HU Y, YIN SH X, BJORN A J, et al. Design of laser schlieren test system for mine gas/air premixed gas deflagration[J]. Opt. Precision Eng., 2019, 27(5): 1045-1051.(in Chinese). doi: 10.3788/ope.20192705.1045http://dx.doi.org/10.3788/ope.20192705.1045
王波, 杜扬, 李国庆, 等. 细长密闭管道内油气爆炸特性研究[J]. 振动与冲击, 2017, 36(9): 80-85, 145.
WANG B, DU Y, LI G Q, et al. Tests for explosion characteristics of gasoline-air mixture in an elongated closed tube[J]. Journal of Vibration and Shock, 2017, 36(9): 80-85, 145.(in Chinese)
王保国, 高歌, 黄伟光. 非定常气体动力学[M]. 北京: 北京理工大学出版社, 2014.
WANG B G, GAO G, HUANG W G. Unsteady Aerodynamics[M]. Beijing: Beijing Insititute of Technology Press, 2014.(in Chinese)
MITH P D, HETHERINGTON J G. Blast and Ballistic Loading of Structures[M]. Boston: Butterworth-Heinemann, 1994.
高光发. 波动力学基础[M]. 北京: 科学出版社, 2019.
GAO G F. Foundations of wave mechanics[M]. Beijing: Science Press, 2019.(in Chinese)
胡明. 不同制备方法的火炮身管材料Cr涂层性能研究[D]. 太原: 中北大学, 2019.
HU M. Study on Properties of Cr Coating of Gun Barrel Materials Prepared by Different Methods[D]. Taiyuan: North University of China, 2019. (in Chinese)
0
Views
287
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution