1.华东理工大学 物理学院,上海 200237
扫 描 看 全 文
YANG Qihang, LI Pan, YANG Han, et al. Generation of high-order and fractional vortex beams using gratings simulated by spatial light modulators. [J]. Optics and Precision Engineering 31(19):2809-2817(2023)
YANG Qihang, LI Pan, YANG Han, et al. Generation of high-order and fractional vortex beams using gratings simulated by spatial light modulators. [J]. Optics and Precision Engineering 31(19):2809-2817(2023) DOI: 10.37188/OPE.20233119.2809.
用空间光调制器模拟叉形光栅的方式产生高阶和分数阶涡旋光束,分离各阶涡旋光束并探究单级特性,探测其拓扑荷数以验证实验方法的正确性。设计了涡旋光束生成光路,编写了产生叉形光栅全息图的计算机程序,利用透射式空间光调制器模拟叉形光栅,以全息图的方式加载到空间光调制器上。调节参数改变全息光栅图样,得到拓扑荷数从1.0到100.0的整数阶与间隔为0.1的分数阶涡旋光束。利用孔径光阑分离出一级衍射,分析其特性并利用干涉法测量其拓扑荷数。实验发现,整数与分数阶光场分布与拓扑荷数为单调关系,拓扑荷数接近100时光束质量显著下降的特性,利用干涉法测得的拓扑荷数与计算全息图设置的参数完全相同。干涉测量结果验证了计算全息方法的正确性。该方法装置简易、参数可调,可为高阶和分数阶涡旋光的产生和应用提供一定的参考。
To generate high-order and fractional-order vortex beams, a spatial light modulator was used to simulate a forked grating. This was performed to generate and isolate the desired vortex beams with the different orbital angular momentum (OAM) of l, and investigated their characteristics. Measurement of their topological charges via the interference method validated the availability and the accuracy of the experimental method. An optical path for vortex beam generation was designed, and a computer program was developed to create a forked grating hologram. This grating was simulated using a transmissive spatial light modulator and uploaded on the modulator as a hologram. By adjusting the parameters, the holographic grating pattern could be modified to produce integer-order vortex beams with topological charges ranging from 1.00 to 100.0. In addition, fractional-order vortex beams were generated at intervals of 0.1. The first order diffraction was isolated using an aperture diaphragm. Subsequently, its characteristics were analyzed, and its topological charge was measured via interferometry. A consistent relationship was observed between the distributions of integer- and fractional-order light fields and their respective topological charge numbers. Notably, as the topological charge number neared 100, a marked reduction was observed in the beam quality. The topological charge number, determined via interferometry, matched the parameters set in the computer-generated hologram, validating the computer-generated holography method's accuracy. Given its straightforward setup and adjustable parameters, this method could serve as a reference for the creation and application of high-order and fractional-order vortex light.
涡旋光束空间光调制器衍射光栅轨道角动量
optical vortexspatial light modulatordiffraction gratingorbital angular momentum
PATERSON L, MACDONALD M P, ARLT J, et al. Controlled rotation of optically trapped microscopic particles[J]. Science, 2001, 292(5518): 912-914. doi: 10.1126/science.1058591http://dx.doi.org/10.1126/science.1058591
JACK B, LEACH J, ROMERO J, et al. Holographic ghost imaging and the violation of a bell inequality[J]. Physical Review Letters, 2009, 103(8): 083602. doi: 10.1103/physrevlett.103.083602http://dx.doi.org/10.1103/physrevlett.103.083602
PATERSON C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901. doi: 10.1103/physrevlett.94.153901http://dx.doi.org/10.1103/physrevlett.94.153901
WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138http://dx.doi.org/10.1038/nphoton.2012.138
高春清, 付时尧. 涡旋光束[M]. 北京: 清华大学出版社, 2019: 1-9.
GAO CH Q, FU SH Y. Vortex Beams[M]. Beijing: Tsinghua University Press, 2019: 1-9.(in Chinese)
BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum[J]. Chinese Optics Letters, 2022, 20(1): 012601. doi: 10.3788/col202220.012601http://dx.doi.org/10.3788/col202220.012601
朱向阳, 邱松, 丁友, 等. 多径向节次拉盖尔-高斯光束旋转多普勒效应分析[J]. 光学学报, 2023, 43(7): 0726003. doi: 10.3788/AOS221762http://dx.doi.org/10.3788/AOS221762
ZHU X Y, QIU S, DING Y, et al. Rotational Doppler effect analysis of multi-radial index Laguerre-Gaussian beam[J]. Acta Optica Sinica, 2023, 43(7): 0726003. (in Chinese). doi: 10.3788/AOS221762http://dx.doi.org/10.3788/AOS221762
ALLEN L, BEIJERSBERGEN M, SPREEUW R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1992, 45(11): 8185-8189. doi: 10.1103/physreva.45.8185http://dx.doi.org/10.1103/physreva.45.8185
STEPHEN M, BARNETT,. Orbital angular momentum and nonparaxial light beams[J]. Optics Communications, 1994, 110(5/6): 670-678. doi: 10.1016/0030-4018(94)90269-0http://dx.doi.org/10.1016/0030-4018(94)90269-0
LEACH J, YAO E, PADGETT M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71. doi: 10.1088/1367-2630/6/1/071http://dx.doi.org/10.1088/1367-2630/6/1/071
TAO S H, LEE W M, YUAN X C. Experimental study of holographic generation of fractional Bessel beams[J]. Applied Optics, 2004, 43(1): 122. doi: 10.1364/ao.43.000122http://dx.doi.org/10.1364/ao.43.000122
ZHANG N, DAVIS J A, MORENO I, et al. Analysis of fractional vortex beams using a vortex grating spectrum analyzer[J]. Applied Optics, 2010, 49(13): 2456. doi: 10.1364/ao.49.002456http://dx.doi.org/10.1364/ao.49.002456
ZHOU J, ZHANG W H, CHEN L X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Applied Physics Letters, 2016, 108(11): 111108. doi: 10.1063/1.4944463http://dx.doi.org/10.1063/1.4944463
LIU Z W, YAN S, LIU H G, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method[J]. Physical Review Letters, 2019, 123(18): 183902. doi: 10.1103/physrevlett.123.183902http://dx.doi.org/10.1103/physrevlett.123.183902
DENG D, LIN M C, LI Y, et al. Precision measurement of fractional orbital angular momentum[J]. Physical Review Applied, 2019, 12: 014048. doi: 10.1103/physrevapplied.12.014048http://dx.doi.org/10.1103/physrevapplied.12.014048
MAO Z X, YU H Y, XIA M, et al. Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural-network approach[J]. Physical Review Applied, 2020, 13(3): 034063. doi: 10.1103/physrevapplied.13.034063http://dx.doi.org/10.1103/physrevapplied.13.034063
ZHANG H, ZENG J, LU X Y, et al. Review on fractional vortex beam[J]. Nanophotonics, 2022, 11(2): 241-273. doi: 10.1515/nanoph-2021-0616http://dx.doi.org/10.1515/nanoph-2021-0616
李晨昊, MAIER S A, 任浩然. 纳米光子学中的光学涡旋[J]. 中国光学(中英文), 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066http://dx.doi.org/10.37188/CO.2021-0066
LI CH H,MAIER S A,REN H R. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. (in Chinese). doi: 10.37188/CO.2021-0066http://dx.doi.org/10.37188/CO.2021-0066
庄京秋, 熊晗, 虞天成, 等. 基于软边小孔的涡旋光轨道角动量检测研究[J]. 光学 精密工程, 2022, 30(12): 1394-1405. doi: 10.37188/OPE.20223012.1394http://dx.doi.org/10.37188/OPE.20223012.1394
ZHUANG J Q, XIONG H, YU T CH, et al. Orbital angular momentum detection of vortex beam based on soft-edge aperture[J]. Opt. Precision Eng., 2022, 30(12): 1394-1405. (in Chinese). doi: 10.37188/OPE.20223012.1394http://dx.doi.org/10.37188/OPE.20223012.1394
徐鹏. 液晶空间光调制器光调制特性测量及其在光学图像处理中的应用研究[D]. 济南: 山东大学, 2005: 10-13.
XU P. Measurement of Light Modulation Characteristics of Liquid Crystal Spatial Light Modulator and Its Application In Optical Image Processing[D]. Jinan: Shandong University, 2005: 10-13.(in Chinese)
CHEN P, WEI B Y, JI W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings[J]. Photonics Research, 2015, 3(4): 133. doi: 10.1364/prj.3.000133http://dx.doi.org/10.1364/prj.3.000133
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution